A. Barzel and M. Kupiec, Finding a match: how do homologous sequences get together for recombination?, Nat. Rev. Genet, vol.9, pp.27-37, 2008.

T. Cremer and M. Cremer, Chromosome territories, Cold Spring Harb. Perspect. Biol, vol.2, p.3889, 2010.

A. B. Berger, High-resolution statistical mapping reveals gene territories in live yeast, Nat. Methods, vol.5, pp.1031-1037, 2008.

A. Taddei, H. Schober, and S. M. Gasser, The budding yeast nucleus, Cold Spring Harb. Perspect. Biol, vol.2, p.612, 2010.

C. Zimmer and E. Fabre, Principles of chromosomal organization: lessons from yeast, J. Cell Biol, vol.192, pp.723-733, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02079552

A. L. Forget and S. C. Kowalczykowski, Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search, Nature, vol.482, pp.423-427, 2012.

S. M. Burgess and N. Kleckner, Collisions between yeast chromosomal loci in vivo are governed by three layers of organization, Gen. Dev, vol.13, pp.1871-1883, 1999.

A. S. Goldman and M. Lichten, The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location, Genetics, vol.144, pp.43-55, 1996.

E. Lieberman-aiden, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, vol.326, pp.289-293, 2009.

P. Therizols, T. Duong, B. Dujon, C. Zimmer, and E. Fabre, Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres, Proc. Natl Acad. Sci. USA, vol.107, pp.2025-2030, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02082757

H. Schober, Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast, Genome Res, vol.18, pp.261-271, 2008.

N. Agmon, S. Pur, B. Liefshitz, and M. Kupiec, Analysis of repair mechanism choice during homologous recombination, Nucleic Acids Res, vol.37, pp.5081-5092, 2009.

Y. Aylon, B. Liefshitz, G. Bitan-banin, and M. Kupiec, Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae, Mol. Cell Biol, vol.23, pp.1403-1417, 2003.

O. Inbar and M. Kupiec, Recombination between divergent sequences leads to cell death in a mismatch-repair-independent manner, Curr. Genet, vol.38, pp.23-32, 2000.

H. Wong, A predictive computational model of the dynamic 3D interphase yeast nucleus, Curr. Biol, vol.22, pp.1881-1890, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01420017

E. Soutoglou, Positional stability of single double-strand breaks in mammalian cells, Nat. Cell Biol, vol.9, pp.675-682, 2007.

J. A. Kaye, DNA breaks promote genomic instability by impeding proper chromosome segregation, Curr. Biol, vol.14, pp.2096-2106, 2004.

N. Kleckner, A mechanical basis for chromosome function, Proc. Natl Acad. Sci. USA, vol.101, pp.12592-12597, 2004.

V. Guacci and D. B. Kaback, Distributive disjunction of authentic chromosomes in Saccharomyces cerevisiae, Genetics, vol.127, pp.475-488, 1991.

R. Bermejo, The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores, Cell, vol.146, pp.233-246, 2011.

S. Hiraga, S. Botsios, and A. D. Donaldson, Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning, J. Cell Biol, vol.183, pp.641-651, 2008.

J. M. Bupp, A. E. Martin, E. S. Stensrud, and S. L. Jaspersen, Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3, J. Cell Biol, vol.179, pp.845-854, 2007.

F. R. Neumann, Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination, Gen. Dev, vol.26, pp.369-383, 2012.

J. H. Wilson, W. Y. Leung, G. Bosco, D. Dieu, and J. E. Haber, The frequency of gene targeting in yeast depends on the number of target copies, Proc. Natl Acad. Sci. USA, vol.91, pp.177-181, 1994.

C. Melamed and M. Kupiec, Effect of donor copy number on the rate of gene conversion in the yeast Saccharomyces cerevisiae, Mol. Gen. Genet, vol.235, pp.97-103, 1992.

J. Mine-hattab and R. Rothstein, Increased chromosome mobility facilitates homology search during recombination, Nat. Cell Biol, vol.14, pp.510-517, 2012.

V. Dion, V. Kalck, C. Horigome, B. D. Towbin, and S. Gasser, Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery, Nat. Cell Biol, vol.14, pp.502-509, 2012.

N. Dimitrova, Y. C. Chen, D. L. Spector, and T. De-lange, 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility, Nature, vol.456, pp.524-528, 2008.

A. A. Goodarzi, T. Kurka, and P. A. Jeggo, KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response, Nat. Struct. Mol. Biol, vol.18, pp.831-839, 2011.

R. Koszul, K. P. Kim, M. Prentiss, N. Kleckner, and S. Kameoka, Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope, Cell, vol.133, pp.1188-1201, 2008.

M. Dundr, Actin-dependent intranuclear repositioning of an active gene locus in vivo, J. Cell Biol, vol.179, pp.1095-1103, 2007.

R. Kalhor, H. Tjong, N. Jayathilaka, F. Alber, and L. Chen, Genome architectures revealed by tethered chromosome conformation capture and population-based modeling, Nat. Biotechnol, vol.30, pp.90-98, 2012.

L. Guelen, Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, vol.453, pp.948-951, 2008.

S. De and M. M. Babu, Genomic neighbourhood and the regulation of gene expression, Curr. Opin. Cell Biol, vol.22, pp.326-333, 2010.

A. Nussenzweig and M. C. Nussenzweig, Origin of chromosomal translocations in lymphoid cancer, Cell, vol.141, pp.27-38, 2010.

G. Fudenberg, G. Getz, M. Meyerson, and L. A. Mirny, High order chromatin architecture shapes the landscape of chromosomal alterations in cancer, Nat. Biotechnol, vol.29, pp.1109-1113, 2011.