G. Blakely, G. May, R. Mcculloch, L. K. Arciszewska, and M. Burke, Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12, Cell, vol.75, pp.351-361, 1993.

G. Blakely, S. Colloms, G. May, M. Burke, and D. Sherratt, Escherichia coli XerC recombinase is required for chromosomal segregation at cell division, New Biol, vol.3, pp.789-798, 1991.

M. Clerget, Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome, New Biol, vol.3, pp.780-788, 1991.

P. L. Kuempel, J. M. Henson, L. Dircks, M. Tecklenburg, and D. F. Lim, dif, a recAindependent recombination site in the terminus region of the chromosome of Escherichia coli, New Biol, vol.3, pp.799-811, 1991.

C. Carnoy and C. A. Roten, The dif/Xer recombination systems in proteobacteria, PLoS One, vol.4, p.6531, 2009.

R. B. Jensen, Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site, J Bacteriol, vol.188, pp.6016-6019, 2006.

L. Neilson, G. Blakely, and D. J. Sherratt, Site-specific recombination at dif by Haemophilus influenzae XerC, Mol Microbiol, vol.31, pp.915-926, 1999.

S. A. Sciochetti, P. J. Piggot, and G. W. Blakely, Identification and characterization of the dif Site from Bacillus subtilis, J Bacteriol, vol.183, pp.1058-1068, 2001.

M. E. Val, S. P. Kennedy, E. Karoui, M. Bonne, L. Chevalier et al., FtsKdependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae, PLoS Genet, vol.4, p.1000201, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-01285588

M. R. Yen, N. T. Lin, C. H. Hung, K. T. Choy, and S. F. Weng, oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome, Appl Environ Microbiol, vol.68, pp.2924-2933, 2002.

G. W. Blakely and D. J. Sherratt, Interactions of the site-specific recombinases XerC and XerD with the recombination site dif, Nucleic Acids Res, vol.22, pp.5613-5620, 1994.

L. Aussel, F. X. Barre, M. Aroyo, A. Stasiak, and A. Z. Stasiak, FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases, Cell, vol.108, pp.195-205, 2002.

F. X. Barre, M. Aroyo, S. D. Colloms, A. Helfrich, and F. Cornet, FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation, Genes Dev, vol.14, pp.2976-2988, 2000.

S. C. Ip, M. Bregu, F. X. Barre, and D. J. Sherratt, Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination, EMBO J, vol.22, pp.6399-6407, 2003.

W. Steiner, G. Liu, W. D. Donachie, and P. Kuempel, The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers, Mol Microbiol, vol.31, pp.579-583, 1999.

S. Bigot, O. A. Saleh, C. Lesterlin, C. Pages, E. Karoui et al., KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase, EMBO J, vol.24, pp.3770-3780, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021178

J. Corre and J. M. Louarn, Evidence from terminal recombination gradients that FtsK uses replichore polarity to control chromosome terminus positioning at division in Escherichia coli, J Bacteriol, vol.184, pp.3801-3807, 2002.

O. Levy, J. L. Ptacin, P. J. Pease, J. Gore, and M. B. Eisen, Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase, Proc Natl Acad Sci U S A, vol.102, pp.17618-17623, 2005.

P. J. Pease, O. Levy, G. J. Cost, J. Gore, and J. L. Ptacin, Sequence-directed DNA translocation by purified FtsK, Science, vol.307, pp.586-590, 2005.

V. Sivanathan, M. D. Allen, C. De-bekker, R. Baker, and L. K. Arciszewska, The FtsK gamma domain directs oriented DNA translocation by interacting with KOPS, Nat Struct Mol Biol, vol.13, pp.965-972, 2006.

J. Yates, I. Zhekov, R. Baker, B. Eklund, and D. J. Sherratt, Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase, Mol Microbiol, vol.59, pp.1754-1766, 2006.

L. Bourgeois, P. Bugarel, M. Campo, N. Daveran-mingot, M. L. Labonte et al., The unconventional Xer recombination machinery of Streptococci/ Lactococci, PLoS Genet, vol.3, p.117, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180535

S. Haldenby, M. F. White, and T. Allers, RecA family proteins in archaea: RadA and its cousins, Biochem Soc Trans, vol.37, pp.102-107, 2009.

M. C. Serre and M. Duguet, Enzymes that cleave and religate DNA at high temperature: the same story with different actors, Prog Nucleic Acid Res Mol Biol, vol.74, pp.37-81, 2003.

M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya, The KEGG databases at GenomeNet, Nucleic Acids Res, vol.30, pp.42-46, 2002.

D. J. Sherratt and D. B. Wigley, Conserved themes but novel activities in recombinases and topoisomerases, vol.93, pp.149-152, 1998.

Y. Cao, B. Hallet, D. J. Sherratt, and F. Hayes, Structure-function correlations in the XerD site-specific recombinase revealed by pentapeptide scanning mutagenesis, J Mol Biol, vol.274, pp.39-53, 1997.

A. J. Spiers and D. J. Sherratt, Relating primary structure to function in the Escherichia coli XerD site-specific recombinase, Mol Microbiol, vol.24, pp.1071-1082, 1997.

H. S. Subramanya, L. K. Arciszewska, R. A. Baker, L. E. Bird, and D. J. Sherratt, Crystal structure of the site-specific recombinase, XerD, EMBO J, vol.16, pp.5178-5187, 1997.

R. K. Lillestol, P. Redder, R. A. Garrett, and K. Brugger, A putative viral defence mechanism in archaeal cells, Archaea, vol.2, pp.59-72, 2006.

K. S. Makarova, N. V. Grishin, S. A. Shabalina, Y. I. Wolf, and E. V. Koonin, A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action, Biol Direct, vol.1, p.7, 2006.

Y. Zivanovic, P. Lopez, H. Philippe, and P. Forterre, Pyrococcus genome comparison evidences chromosome shuffling-driven evolution, Nucleic Acids Res, vol.30, pp.1902-1910, 2002.

H. Myllykallio, P. Lopez, P. Lopez-garcia, R. Heilig, and W. Saurin, Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon, Science, vol.288, pp.2212-2215, 2000.

P. Lopez, H. Philippe, H. Myllykallio, and P. Forterre, Identification of putative chromosomal origins of replication in Archaea, Mol Microbiol, vol.32, pp.883-886, 1999.

S. R. Eddy, Profile hidden Markov models, Bioinformatics, vol.14, pp.755-763, 1998.

M. Lundgren, A. Andersson, L. Chen, P. Nilsson, and R. Bernander, Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination, Proc Natl Acad Sci U S A, vol.101, pp.7046-7051, 2004.

N. P. Robinson, I. Dionne, M. Lundgren, V. L. Marsh, and R. Bernander, Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus, Cell, vol.116, pp.25-38, 2004.

M. Hoebeke and S. Schbath, R'MES: Finding Exceptional Motifs, 2006.

M. C. Serre, C. Letzelter, J. R. Garel, and M. Duguet, Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase, J Biol Chem, vol.277, pp.16758-16767, 2002.

F. Hayes and D. J. Sherratt, Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli, J Mol Biol, vol.266, pp.525-537, 1997.

F. Cornet, B. Hallet, and D. J. Sherratt, Xer recombination in Escherichia coli. Sitespecific DNA topoisomerase activity of the XerC and XerD recombinases, J Biol Chem, vol.272, pp.21927-21931, 1997.

F. Constantinesco, P. Forterre, E. V. Koonin, L. Aravind, and C. Elie, A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea, Nucleic Acids Res, vol.32, pp.1439-1447, 2004.

A. Quaiser, F. Constantinesco, M. F. White, P. Forterre, and C. Elie, The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius, BMC Mol Biol, vol.9, p.25, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00259172

S. Zhang, T. Wei, G. Hou, C. Zhang, and P. Liang, Archaeal DNA helicase HerA interacts with Mre11 homologue and unwinds blunt-ended doublestranded DNA and recombination intermediates, DNA Repair (Amst), vol.7, pp.380-391, 2008.

L. M. Iyer, K. S. Makarova, E. V. Koonin, and L. Aravind, Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging, Nucleic Acids Res, vol.32, pp.5260-5279, 2004.

S. D. Colloms, C. Alen, and D. J. Sherratt, The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi, Mol Microbiol, vol.28, pp.521-530, 1998.

F. Cornet, I. Mortier, J. Patte, and J. M. Louarn, Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif, J Bacteriol, vol.176, pp.3188-3195, 1994.

C. J. Stirling, S. D. Colloms, J. F. Collins, G. Szatmari, and D. J. Sherratt, ) xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase, EMBO J, vol.8, pp.1623-1627, 1989.

C. J. Stirling, G. Szatmari, G. Stewart, M. C. Smith, and D. J. Sherratt, The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus, EMBO J, vol.7, pp.4389-4395, 1988.

M. Lundgren and R. Bernander, Genome-wide transcription map of an archaeal cell cycle, Proc Natl Acad Sci U S A, vol.104, pp.2939-2944, 2007.

P. Forterre, Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins, Mol Microbiol, vol.33, pp.457-465, 1999.

P. Forterre, The origin of DNA genomes and DNA replication proteins, Curr Opin Microbiol, vol.5, pp.525-532, 2002.

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst Biol, vol.52, pp.696-704, 2003.

J. Kim, C. Zwieb, C. Wu, and S. Adhya, Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector, Gene, vol.85, pp.15-23, 1989.