B. K. Singh, R. D. Bardgett, P. Smith, and D. S. Reay, Microorganisms and climate change: terrestrial feedbacks and mitigation options, Nat. Rev. Microbiol, vol.8, pp.779-790, 2010.

L. Chistoserdova and M. G. Kalyuzhnaya, Current Trends in Methylotrophy, Trends Microbiol, vol.26, pp.703-714, 2018.

G. Borrel, Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea, Nat. Microbiol, vol.4, pp.603-613, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02059013

L. Chistoserdova, The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy, Mol. Biol. Evol, vol.21, pp.1234-1241, 2004.

L. Chistoserdova, Wide distribution of genes for tetrahydromethanopterin/methanofuranlinked C1 transfer reactions argues for their presence in the common ancestor of bacteria and archaea, Frontiers in Microbiology, vol.7, p.1425, 2016.

M. C. Weiss, The physiology and habitat of the last universal common ancestor, Nat. Microbiol, vol.1, p.16116, 2016.

G. Borrel, P. S. Adam, and S. Gribaldo, Methanogenesis and the Wood-Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association, Genome Biol. Evol, vol.8, pp.1706-1711, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02445396

G. Fuchs, Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?, Annu. Rev. Microbiol, vol.65, pp.631-658, 2011.

R. Laso-pérez, Thermophilic archaea activate butane via alkyl-coenzyme M formation, Nature, vol.539, pp.396-401, 2016.

L. Chistoserdova, Modularity of methylotrophy, revisited, Environmental Microbiology, vol.13, pp.2603-2622, 2011.

L. Chistoserdova, J. A. Vorholt, R. K. Thauer, and M. E. Lidstrom, C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea, Science, vol.281, pp.99-102, 1998.

J. A. Vorholt, L. Chistoserdova, S. M. Stolyar, R. K. Thauer, and M. E. Lidstrom, Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria 22 and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases, J. Bacteriol, vol.181, pp.5750-5757, 1999.

M. Bauer, Archaea-like genes for C1-transfer enzymes in Planctomycetes: Phylogenetic implications of their unexpected presence in this phylum, J. Mol. Evol, vol.59, pp.571-586, 2004.

M. G. Kalyuzhnaya, Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights, J. Bacteriol, vol.187, pp.4607-4614, 2005.

C. N. Butterfield, Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone, PeerJ, vol.4, p.2687, 2016.

K. F. Ettwig, Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, vol.464, pp.543-548, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00907649

K. Raymann, C. Brochier-armanet, and S. Gribaldo, The two-domain tree of life is linked to a new root for the Archaea, Proc. Natl. Acad. Sci, vol.112, pp.6670-6675, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02018983

P. S. Adam, G. Borrel, C. Brochier-armanet, and S. Gribaldo, The growing tree of Archaea: New perspectives on their diversity, evolution and ecology, ISME J, vol.11, pp.2407-2425, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02445405

S. Ramamoorthy, Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments, Int. J. Syst. Evol. Microbiol, vol.56, pp.2729-2736, 2006.

I. A. Davidova, Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffindegrading enrichment culture and emended description of the family Desulfarculaceae, Int. J. Syst. Evol. Microbiol, vol.66, p.23, 2016.

P. S. Adam, G. Borrel, and S. Gribaldo, Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes, Proc. Natl. Acad. Sci, vol.115, p.5837, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02445417

F. L. Sousa and W. F. Martin, Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism, Biochim. Biophys. Acta -Bioenerg, vol.1837, pp.964-981, 2014.

L. Chistoserdova, M. E. Rasche, and M. E. Lidstrom, Novel Dephosphotetrahydromethanopterin Biosynthesis Genes Discovered via Mutagenesis in Methylobacterium extorquens AM1, J. Bacteriol, vol.187, pp.2508-2512, 2005.

B. K. Pomper, O. Saurel, A. Milon, and J. A. Vorholt, Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1, FEBS Lett, vol.523, pp.133-137, 2002.

T. Wagner, U. Ermler, and S. Shima, The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46, vol.354, pp.114-117, 2016.

G. J. Crowther, G. Kosaly, and M. E. Lidstrom, Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1, J. Bacteriol, vol.190, pp.5057-5062, 2008.

A. Bar-even, E. Noor, and R. Milo, A survey of carbon fixation pathways through a quantitative lens, Journal of Experimental Botany, vol.63, pp.2325-2342, 2012.

I. A. Figueroa, Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO 2 fixation pathway, Proc. Natl. Acad. Sci, p.201715549, 2017.

J. A. Vorholt, C. J. Marx, M. E. Lidstrom, and R. K. Thauer, Novel formaldehydeactivating enzyme in Methylobacterium extorquens AM1 required for growth on methanol, J. Bacteriol, vol.182, pp.6645-6650, 2000.

Z. Lin and R. Sparling, Investigation of serine hydroxymethyltransferase in methanogens, Can. J. Microbiol, vol.44, pp.652-656, 1998.

E. Schwartz, J. Fritsch, and B. Friedrich, The Prokaryotes, pp.119-199, 2013.

M. B. Begemann, M. R. Mormile, O. C. Sitton, J. D. Wall, and D. A. Elias, A streamlined strategy for biohydrogen production with Halanaerobium hydrogeniformans, an alkaliphilic bacterium, Front. Microbiol, vol.3, p.93, 2012.

M. W. Maune and R. S. Tanner, Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum, Int. J. Syst. Evol. Microbiol, vol.62, pp.832-838, 2012.

R. Liang, R. S. Grizzle, K. E. Duncan, M. J. Mcinerney, and J. M. Suflita, Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines, Front. Microbiol, vol.5, p.89, 2014.

J. F. Kasting, Methane and climate during the Precambrian era, Precambrian Res, vol.137, pp.119-129, 2005.

Y. Ueno, K. Yamada, N. Yoshida, S. Maruyama, and Y. Isozaki, Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era, Nature, vol.440, pp.516-519, 2006.

S. P. Slotznick and W. W. Fischer, Examining Archean methanotrophy, Earth Planet. Sci. Lett, vol.441, pp.52-59, 2016.

R. E. Summons, L. L. Jahnke, and Z. Roksandic, Carbon isotopic fractionation in lipids 25 from methanotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers, Geochim. Cosmochim. Acta, vol.58, pp.2853-2863, 1994.

L. L. Jahnke, R. E. Summons, J. M. Hope, and D. J. Des-marais, Carbon isotopic fractionation in lipids from methanotrophic bacteria II: The effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers

, Geochim. Cosmochim. Acta, vol.63, pp.79-93, 1999.

F. U. Battistuzzi and S. B. Hedges, A major clade of prokaryotes with ancient adaptations to life on land, Mol. Biol. Evol, vol.26, pp.335-343, 2009.

J. D. Haqq-misra, S. D. Domagal-goldman, P. J. Kasting, and J. F. Kasting, A revised, hazy methane greenhouse for the Archean Earth, Astrobiology, vol.8, pp.1127-1137, 2008.

K. O. Konhauser, Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event, Nature, vol.458, pp.750-753, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00411148

D. C. Catling, M. W. Claire, and K. J. Zahnle, Anaerobic methanotrophy and the rise of atmospheric oxygen, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.365, pp.1867-1888, 2007.

S. J. Daines and T. M. Lenton, The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation, Earth Planet. Sci. Lett, vol.434, pp.42-51, 2016.

V. M. Markowitz, IMG: the integrated microbial genomes database and comparative analysis system, Nucleic Acids Res, vol.40, pp.115-122, 2012.

K. C. Wrighton, Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science (80-. ), vol.337, pp.1661-1665, 2012.

D. Hyatt, Prodigal: Prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, vol.11, p.119, 2010.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima et al., New perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, vol.45, pp.353-361, 2017.

L. S. Johnson, S. R. Eddy, and E. Portugaly, Hidden Markov model speed heuristic and iterative HMM search procedure, BMC Bioinformatics, vol.11, p.431, 2010.

P. S. Garcia, F. Jauffrit, C. Grangeasse, C. Brochier-armanet, and . Genespy, Bioinformatics, vol.35, pp.329-331, 2019.

S. S. Abby, B. Néron, H. Ménager, M. Touchon, and E. P. Rocha, MacSyFinder: A program to mine genomes for molecular systems with an application to CRISPR-Cas systems, PLoS One, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

R. C. Edgar and . Muscle, Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

A. Criscuolo, S. Gribaldo, and . Bmge, Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol. Biol, vol.10, p.210, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02445904

L. T. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

K. Kobert, L. Salichos, A. Rokas, and A. Stamatakis, Computing the Internode Certainty and Related Measures from Partial Gene Trees, Mol. Biol. Evol, vol.33, pp.1606-1617, 2016.

A. Stamatakis, -. Raxml, and . Vi-hpc, Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, pp.2688-2690, 2006.

D. T. Hoang, O. Chernomor, A. Von-haeseler, B. Q. Minh, and L. S. Vinh, UFBoot2: 27 improving the ultrafast bootstrap approximation, Mol. Biol. Evol, vol.35, pp.518-522, 2017.

N. Lartillot, T. Lepage, and S. Blanquart, PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating, Bioinformatics, vol.25, pp.2286-2288, 2009.

M. Kanehisa, Y. Sato, K. Morishima, and G. Blastkoala, KEGG Tools for Functional Characterization of Genome and Metagenome Sequences, Journal of Molecular Biology, vol.428, pp.726-731, 2016.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

R. Overbeek, The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST), Nucleic Acids Res, vol.42, pp.206-214, 2014.

D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson et al., Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, vol.25, pp.1043-1055, 2015.

P. S. , performed all phylogenomic analyses

P. S. and G. B. , performed genome synteny and metabolic reconstruction analyses

P. S. , G. B. , and S. G. , analyzed the data and wrote the paper

, Data availability: All raw data (HMM profiles, initial and trimmed alignments, full trees in Newick format) are available in Supplementary Data 4

:. P. Acknowledgments, is supported by a PhD fellowship from Paris Diderot University and by funds from the PhD Programme "Frontières du Vivant (FdV)-Programme Bettencourt