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Abstract

Methanogenesis coupled to theWood–Ljungdahl pathway isoneof themostancientmetabolisms for energygenerationandcarbon

fixation in theArchaea.Recent results are sensibly changingour viewon thediversityofmethane-cyclingcapabilities in thisDomainof

Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel

methanogenic lineages phylogenetically distant to previously known ones, such as the Methanomassiliicoccales. At the same time,

phylogenomic analyses have suggested a methanogenic ancestor for all Archaea, implying multiple independent losses of this

metabolism during archaeal diversification. This prediction has been strengthened by the report of genes involved in methane cycling

in members of the Bathyarchaeota (a lineage belonging to the TACK clade), representing the first indication of the presence of

methanogenesis outside of the Euryarchaeota. In light of these new data, we discuss how the association between methanogenesis

and the Wood–Ljungdahl pathway appears to be much more flexible than previously thought, and might provide information on the

processes that ledto lossof thismetabolisminmanyarchaeal lineages.Thecombinationofenvironmentalmicrobiology,experimental

characterization and phylogenomics opens up exciting avenues of research to unravel the diversity and evolutionary history of

fundamental metabolic pathways.
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The Wood–Ljungdahl (WL) pathway is one of the most impor-

tant metabolisms for energy generation and carbon fixation

(Berg 2011). Although its overall scheme is conserved in

Archaea and Bacteria, only the carbonyl branch (CBWL)

shares homology, whereas the archaeal and bacterial methyl

branches (MBWL) involve different C1-carriers, cofactors, elec-

tron transporters, and enzymes (Fuchs 2011). Other than

carbon fixation, the WL pathway can act in reverse to produce

reducing power from the oxidation of organic compounds

during organo-heterotrophic growth (Vorholt et al. 1995;

Schauder et al. 1988; Hattori et al. 2005). When using the

WL pathway for energy generation and carbon fixation, most

bacteria produce acetate as an end product (acetogens)

whereas most archaea produce methane (CO2-reducing

methanogens). The WL pathway has, therefore, been tradi-

tionally linked to methanogenesis in the Archaea. Until re-

cently, all known methanogens were known to fall into two

classes (Class I and Class II), both belonging to the

Euryarchaeota (fig. 1A). Irrespective of the type of

methanogenesis performed (CO2-reducing, acetoclasic, and

methylotrophic), the representatives of these two classes

have been consistently found to share a common set of en-

zymes for methanogenesis:

1. The Methyl-Branch of the archaeal type WL pathway
(MBWL).

2. The N5-Methyltetrahydromethanopterin: coenzyme M
methyltransferase complex (MTR).

3. The methyl-coenzyme M reductase complex (MCR).

In the case of growth on CO2 and H2, performed by most

Class I and II methanogens (CO2-reducing methanogenesis)

(fig. 2A), CO2 is sequentially reduced through the MBWL

pathway to a methyl-group in a process that requires a re-

duced low potential ferredoxin (Fdred
2�) for CO2 activation.

The MTR complex then couples the energetically favorable

transfer of a methyl-group from terahydromethanopterin

(H4MPT) to coenzyme M (CoM-SH) with the translocation

GBE
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of sodium outside the cytoplasmic membrane, generating an

ion motive force exploitable by an ATP synthase for energy

conservation. The MCR complex then catalyzes the forma-

tion of CH4 and CoM–S–S–CoB (also called heterodisulfide)

from CoM–S–CH3 and HS–CoB. In methanogens without

cytochromes, a recently described mechanism, called the

flavin-based electron bifurcation (Kaster et al. 2011), takes

place within the cytoplasmic heterodisulfide reductase

(HdrABC)/F420-non reducing hydrogenase (MvhADG) com-

plex (referred to as Hdr/Mvh hereafter) to couple the exer-

gonic reduction of heterodisulfide by H2 to the endergonic

reduction of a low potential ferredoxin by H2 (fig. 2A). This

Fdred
2� is reoxidized at the first step of the MBWL pathway

for CO2 reduction. A membrane bound hydrogenase ex-

ploits the chemiosmotic gradient generated during metha-

nogensis to produce additional Fdred
2� needed for CO2

fixation by the WL pathway (Kaster et al. 2011). It should

be noted that a certain variability exists around this scheme.

For example, within the MBWL pathway the same step can

be carried out by different enzymes (e.g., Mtd/Hmd) (Afting

et al. 2000). Moreover, the MBWL pathway and the MTR

complex are used in reverse during methylotrophic metha-

nogenesis in Methanosarcinales (Keltjens and Vogels 1993)

and are not involved for methanogenesis by reduction of

methyl-compounds with H2 (Fricke et al. 2006; Welander

and Metcalf 2008).

Given the complexity and importance of the methanogen-

esis pathway, its origin and evolution are key questions. Early

phylogenetic analyses showed no evidence for horizontal

gene transfer of CO2-reducing methanogenesis among

methanogens, suggesting a single origin in Euryarchaeota,

after the divergence of Thermococcales (Bapteste et al.

2005) (fig. 1A). A corollary to such unique origin of methano-

genesis was that most present-day non-methanogen lineages

within the Euryarchaeota would have lost the capacity to gain

energy from this metabolism (Brochier et al. 2004).

Methanogenic and non-methanogenic archaea form clearly

distinct lineages (at least at the level of orders), suggesting

that such losses would have been ancient and relatively rare

events (fig. 1A). This is notably reflected by the much more

important deepness of taxonomic conservation of methano-

genesis when compared with other metabolisms (Martiny

et al. 2013). In fact, there has been so far no evidence of

loss of methanogenesis at small taxonomic scale in Class I

and II methanogens. This may be due to the fact that metha-

nogens are not capable to obtain energy from another
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FIG. 1.—Schematic views of the archaeal phylogeny including complete genomes available before 2012 (A) and currently (B), based on the literature (see

text for details). Fast evolving DPANN lineages are not included as their position is unclear. Red arrows indicate the inferred origin of methanogenesis, with

further divergence leading to lineages that retained this metabolism based on experimental characterization or the presence of MCR homologues (in red).

Colored circles indicate the type of known and predicted pathways in representatives of the lineages according to the descriptive panel.
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metabolism, probably a necessary intermediate step toward

methanogenesis loss. These aspects distinguish methanogen-

esis from most other energetic metabolisms that are generally

less exclusive within a given clade and more easily transferable.

Shifting away from methane-metabolism could take very dif-

ferent directions. For example, Halobacteriales have lost both

MTR and MCR complexes as well as the MBWL pathway, and

have adapted to radically different conditions (e.g., aerobic

environments), helped by an important contribution of lateral

gene transfer from Bacteria throughout their evolution

(Nelson-Sathi et al. 2012; Becker et al. 2014). In contrast,

Archaeoglobales have retained some or all enzymes of the
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FIG. 2.—Different configurations for the associated or independent functioning of the archaeal version of the Wood-Ljungdahl (WL) pathway and

methanogenesis. Missing enzymatic complexes and related reactions are shaded in gray. (A) CO2-reducing methanogenesis as present in Class I and Class II

methanogens without cytochromes. (B) Methanogenesis by reduction of methyl-compounds using H2 as present in Methanomassiliicoccales.

(C) Methanogenesis by reduction of methyl-compounds using H2 as inferred in Bathyarchaeota BA1, and potential link with the WL pathway in absence

of MTR. (D) Carbon fixation using the archaeal WL pathway in absence of methanogenesis, and proposal of a mechanism to generate low potential

ferredoxin (Fdred
2�) during sulphate reduction in the case of Archaeoglobales. Carbon fluxes originating from CO2 or methyl-compounds are shown by red

arrows, and carbon fluxes from other sources by blue arrows. Green arrows indicate electron transfers associated with ferredoxins reduction or oxidation.

The dotted green arrows in (B) and (C) integrate the electron bifurcation process leading to the generation of an Fdred
2� by the Hdr/Mvh complex as

described in (A). The reduction of heterodisulfide by Fdred
2� in (B) and the reduction of 2H+ by Fdred

2� in (C) that are coupled to proton translocation across

the membrane are not shown. Abbreviations are as follows: MBWL, methyl-branch of the WL pathway; CBWL, carbonyl-branch of the WL pathway; MTR,

N5-methyltetrahydromethanopterin: coenzyme M methyltransferase complex; MCR, methyl-coenzyme M reductase complex; Hdr, cytoplasmic heterodi-

sulfide reductase complex; Mvh, F420-non-reducing hydrogenase complex; Hdl, cytoplasmic heterodisulfide reductase-like complex; Ech, Energy converting

hydrogenase complex; Fpo, truncated F420H2 hydrogenase; H4MPT, tetrahydromethanopterin; CoM–S–H, coenzyme M; CoB–S–H, coenzyme B; CoM–S–S–

CoB, heterodisulfide; Fd/Fdred
2�, oxidized/reduced low potential ferredoxin; R-CH3, methylated compound such as methanol or methylamines; DsrC>S,

DsrC trisulfide.
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archaeal WL pathway, remnant of their ancestral methane-

cycling lifestyle (Vorholt et al. 1995; Bapteste et al. 2005).

With the exception of Archaeoglobales, the archaeal WL

pathway has long been thought to be associated to metha-

nogenesis only, and thus specifically linked to the MTR and

MCR complexes. This view has been widely altered over the

last 3 years, as genomic data from previously poorly charac-

terized archaeal lineages have become available (fig. 1B). A

first unconventional case showed up with the discovery of a

seventh order of methanogens, the Methanomassiliicoccales,

phylogenetically unrelated to Class I or Class II methanogens,

but rather belonging to the recently proposed superclass

Diaforarchaea (Borrel et al. 2013; Petitjean et al. 2015)

(fig. 1B). Methanomassiliicoccales are distinguished from all

previously known methanogens by the complete lack of the

archaeal MBWL pathway and the MTR complex (fig. 2B)

(Borrel et al. 2013, 2014; Lang et al. 2015; Söllinger et al.

2016). For methanogenesis, they use methyltransferases and

corrinoid proteins allowing the transfer of methyl-groups from

methanol, methylated-amines, and dimethyl sulfide to HS-

CoM (fig. 2B). As the archaeal MBWL pathway and MTR com-

plex are missing, methanogenesis in Methanomassiliicoccales

is restricted to the reduction of methyl-compounds with H2,

validated by physiological characterization (Dridi et al. 2012;

Brugère et al. 2014; Lang et al. 2015). As in Class I and II

methanogens without cytochromes, here Fdred
2� are also

likely generated by the Hdr/Mvh complex through flavin-

based electron bifurcation (Borrel et al. 2014). Energy conser-

vation potentially involves an additional coupling between fer-

redoxin and heterodisulfide, where the Fdred
2� generated by

Hdr/Mvh reduces a second heterodisulfide (Borrel et al. 2014;

Lang et al. 2015; Kröninger et al. 2016). This reaction is likely

operated by the association of a truncated F420H2 hydroge-

nase (Fpo) and a second heterodisulfide reductase (HdrD), and

is coupled to the generation of a chemiosmotic gradient (fig.

2B) exploitable by an ATP synthase (Lang et al. 2015;

Kröninger et al. 2016). This process represents, a novel way

for coupling methanogenesis to energy conservation.

In parallel with the growing availability of genomic data

from an ever-wider spectrum of archaeal diversity, large-

scale phylogenomic analyses are sensibly changing our view

on the early evolution of the third Domain of Life. For exam-

ple, a recent analysis has proposed a novel root for the ar-

chaeal tree lying within the Euryarchaeota (Raymann et al.

2015; fig. 1B). According to this novel topology, the first di-

vergence in archaeal diversification would have separated two

clusters, one containing Methanococcales, Thermococcales,

and the TACK clade, and the other containing all other

Euryarchaeota (fig. 2B). Because both clusters contain metha-

nogenic lineages, this result suggests that the last common

ancestor of Archaea was a methanogen, pushing further back

in time the origin of this important metabolism, in agreement

with its antiquity (Liu et al. 2012). This also implies even more

losses of methanogenesis than currently assumed. Moreover,

the hypothesis of a methanogenic ancestor for a cluster that

also includes the TACK opened up the possibility for the exis-

tence of additional lineages capable of methane metabolism

in this clade and related lineages.

This prediction has been met by the recent report of the

presence of methane metabolism in the Bathyarchaeota (for-

merly known as Miscellaneous Crenarchaeota Group) (Evans

et al. 2015; fig. 1B). This diversified phylum is associated with

the TACK and is composed of versatile archaea that can gain

energy at least from fermentation, as inferred by the analysis

of the first available genomes from uncultured members

(Lloyd et al. 2013; Evans et al. 2015; Sara Lazar et al. 2015;

He et al. 2016). Stunningly, among those genomes, two (BA1

and BA2) contain genes encoding the MCR complex, and,

therefore, likely represent the first methane-cycling archaea

not affiliated with Euryarchaeota (Evans et al. 2015).

Moreover, in unrooted phylogenies of MCR subunits,

Bathyarchaeota sequences are very divergent with respect to

Euryarchaeota sequences, suggesting vertical inheritance of

these genes in BA1 and BA2, strengthening an ancient

origin of methanogenesis (Evans et al. 2015). This suggests

even more independent losses of methanogenesis during ar-

chaeal evolution (fig. 1B).

By which mechanisms methanogenesis could be lost is un-

known, but it should involve a transitory state where energy is

also gained by an alternative energetic metabolism. In this

regard, BA1 and BA2 are exceptionally valuable as they rep-

resent the only archaea that likely handle both methane me-

tabolism and an alternative energetic metabolism (i.e.,

fermentation). If fermentation processes are fully independent

from methanogenic ones, BA1 and BA2 could be much closer

to lose methanogenesis than any other known methanogen.

Interestingly, recently sequenced SG8-32-3 and AD8-1 ge-

nomes share 87–89% sequence identity with BA1 and BA2

based on 16S rRNA, but lack MCR and MTR gene homo-

logues, implying that they are not capable of obtaining

energy through methanogenesis (Sara Lazar et al. 2015). A

variable presence of methane-metabolism at such shallow

phylogenetic distance has never been observed previously.

Analysis of the BA1 and BA2 draft genomes (91.6% and

93.8% completeness, respectively) allowed to infer their po-

tential methane-related metabolic capabilities (Evans et al.

2015). Because of the lack of the MTR complex in both ge-

nomes, along with the presence of sequences with homology

to corrinoid proteins, MtaA/MtbA methyltransferases

and novel methyltransferases, it was proposed that methano-

genesis in these Bathyarchaeota could occur via reduction of

methyl compounds by H2, similar to Methanomassiliicoccales

(Evans et al. 2015). Interestingly, the analysis of BA1 revealed

yet another variation on the theme of methanogenesis and

the archaeal WL pathway. In fact, BA1 harbors both the WL

pathway and the MCR complex, without the MTR complex

that links the two in Class I and Class II methanogens (fig. 2C;

Evans et al. 2015). For energy conservation, an Hdr/Mvh
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complex could produce Fdred
2� through flavin-based electron

bifurcation, as described in other methanogens, and an

energy-converting hydrogenase (Ech) could reduce protons

with those Fdred
2� to generate a chemiosmotic gradient.

However, no evidence for the presence of an ATP synthase

that could exploit this gradient was found in BA1 and BA2

genomes or in their source metagenomes (Evans et al. 2015).

Therefore, an alternative hypothesis may be proposed, where

the Fdred
2� generated by methanogenesis from H2-dependent

reduction of methyl compounds might be used for CO2 re-

duction in the archaeal WL pathway (fig. 2C). The produced

acetyl-CoA could be both integrated into biomass and con-

verted into acetate for ATP generation (fig. 2C). In other

words, the reducing power produced by methanogenesis

from H2-dependent reduction of methyl compounds would

be used in reductive acetogenesis for carbon fixation and

energy conservation.

Might this hypothetical alternative coupling of methano-

genesis and the archaeal WL pathway be more fragile than

the one that has a connection through the MTR complex?

And would this make it easier to replace methanogenesis by

another source of reducing power for the archaeal WL path-

way? Alternative energetic coupling for carbon fixation with

the archaeal WL pathway has long been restricted to

Archaeoglobales (fig. 2D). This case might be no longer

unique as the presence of the archaeal WL pathway in the

absence of MCR and MTR complexes has now been reported

from an increasing number of archaeal lineages (fig. 1B),

within the Bathyarchaeota (Sara Lazar et al. 2015; He et al.

2016), the Altiarchaeales (Probst et al. 2014), the

Hadesarchaea/MSBL-1 (Baker et al. 2016; Mwirichia et al.

2016), the Lokiarchaeota (Sousa et al. 2016), and the

Thorarchaeota (Seitz et al. 2016). As suggested for

Archaeoglobales, the presence of the archaeal WL pathway

in these lineages might be the remnant of a previous associ-

ation with methanogenesis. The studies describing these novel

archaea have discussed the direction of the WL pathway

(CO2-reduction to acetyl-CoA or oxidation of acetyl-CoA to

CO2). However, mechanisms to generate low potential re-

duced ferredoxin for CO2-reduction by the archaeal WL path-

way in the absence of methanogenesis remain to be

elucidated. It was shown that during sulfate reduction,

Archaeoglobus fulgidus generates two disulfide bonds on

the DsrC protein (forming a DsrC trisulfide) that are reduced

by a membrane bound heterodisulfide reductase-like enzyme

for energy conservation (Santos et al. 2015). Interestingly,

Archaeoglobales representatives also possess a cytoplasmic

complex very similar to the Hdr/Mvh complex present in

methanogens (Mander et al. 2004). The hypothesis could

thus be made that the Fd 2�
red required for carbon fixation

might be generated through an electron bifurcation mecha-

nism akin to the process taking place in methanogens, with

DsrC trisulfide replacing CoM–S–S–CoB (fig. 2D). In the other

lineages of non-methanogens bearing the archaeal WL

pathway (fig. 1B), homologues of HdrABC and sometimes

MvhADG/FrhAB/Hyd hydrogenases have been identified and

might be involved in the processes of Fd 2�
red generation, with

potentially new types of energetic coupling that remain to be

fully explored. Alternatively, the archaeal WL pathway might

also be used in reverse in these novel archaeal lineages to

produce reducing power from the oxidation of organic

compounds, as observed in Archaeoglobales growing

organo-heterotrophically (Klenk et al. 1997).

The classical association of methanogenesis with the ar-

chaeal WL pathway appears to be less and less the rule

(e.g., MCR without WL/MTR and WL without MTR/MCR),

and potentially more flexible than previously thought. First,

the larger phylogenetic distribution of methanogens without

WL/MTR underlines the increasing importance of methano-

genesis based on the reduction of methyl compounds by

H2, whose environmental relevance might have been under-

estimated, as well as its potential antiquity. This is further

strengthened by the recent report of this metabolic confor-

mation in a proposed novel class of methanogens named

“Candidatus Methanofastidiosa” (formerly known as WSA2)

(Nobu et al. 2016). Second, among the growing number of

archaeal lineages that harbor the WL pathway in the absence

of MTR and MCR complexes, it might be wondered whether

Fd2
red
� generation processes alternative to the ones driven by

methanogenesis represent recent adaptations, or if some of

them might have been already present early in evolution.

Future genomic and metabolic exploration of still unchar-

acterized archaeal lineages, notably those with potential for

methane metabolism (Lever & Teske 2015; Lloyd 2015; Lever

2016), promises exciting information on the diversity and evo-

lution of methanogenesis, its connection with the WL path-

way, and its loss through different mechanisms and transitory

states linked to alternative ways for energy conservation.
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