M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-garayzabal et al., The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations, Int. J. Syst. Bacteriol, vol.44, pp.812-826, 1994.

D. L. Stevens, M. J. Aldape, and A. E. Bryant, Life-threatening clostridial infections, Anaerobe, vol.18, pp.254-259, 2012.

N. Yutin and M. Y. Galperin, A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia, Environ. Microbiol, vol.15, pp.2631-2641, 2013.

S. P. Borriello, Pathogenesis of Clostridium difficile infection, J. Antimicrob. Chemother, pp.13-19, 1998.

M. Rupnik, M. H. Wilcox, and D. N. Gerding, Clostridium difficile infection: New developments in epidemiology and pathogenesis, Nat. Rev. Microbiol, vol.7, pp.526-536, 2009.

I. Just, J. Selzer, M. Wilm, C. Streiber, M. Mann et al., Glucosylation of Rho proteins by Clostridium difficile toxin B, Nature, vol.375, pp.500-503, 1995.

G. P. Carter, J. I. Rood, and D. Lyras, The role of toxin A and toxin B in the virulence of Clostridium difficile, Trends Microbiol, vol.20, pp.21-29, 2012.

C. Eckert, A. Emirian, A. Le-monnier, L. Cathala, H. De-montclos et al., Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New Microbes New Infect, vol.3, pp.12-17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02022706

D. N. Gerding, S. Johnson, M. Rupnik, and K. Aktories, Clostridium difficile binary toxin CDT: Mechanism, epidemiology, and potential clinical importance, Gut Microbes, vol.5, pp.15-27, 2014.

P. Papatheodorou, J. E. Carette, G. W. Bell, C. Schwan, G. Guttenberg et al., Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT), Proc. Natl. Acad. Sci, vol.108, pp.16422-16427, 2011.

H. Barth, K. Aktories, M. R. Popoff, and B. G. Stiles, Binary bacterial toxins: Biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol, Mol. Biol. Rev, vol.68, pp.373-402, 2004.

K. Aktories, C. Schwan, P. Papatheodorou, and A. E. Lang, Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin, Toxicon, vol.60, pp.572-581, 2012.

C. Schwan, T. Nolke, A. S. Kruppke, D. M. Schubert, A. E. Lang et al., Cholesterol-and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT), J. Biol. Chem, vol.286, pp.29356-29365, 2011.

C. Schwan, B. Stecher, T. Tzivelekidis, M. Van-ham, M. Rohde et al., Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria, PLoS Pathog, vol.5, 2009.

T. Akerlund, B. Svenungsson, A. Lagergren, and L. G. Burman, Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates, J. Clin. Microbiol, vol.44, pp.353-358, 2006.

B. Wren, S. R. Heard, and S. Tabaqchali, Association between production of toxins A and B and types of Clostridium difficile, J. Clin. Pathol, vol.40, pp.1397-1401, 1987.

M. Warny, J. Pepin, A. Fang, G. Killgore, A. Thompson et al., Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe, Lancet, vol.366, pp.1079-1084, 2005.

M. Merrigan, A. Venugopal, M. Mallozzi, B. Roxas, V. K. Viswanathan et al., Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production, J. Bacteriol, vol.192, pp.4904-4911, 2010.

B. Dupuy and A. L. Sonenshein, Regulated transcription of Clostridium difficile toxin genes, Mol. Microbiol, vol.27, pp.107-120, 1998.

T. Hundsberger, V. Braun, M. Weidmann, P. Leukel, M. Sauerborn et al., Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile, Eur. J. Biochem, vol.244, pp.735-742, 1997.

K. Yamakawa, T. Karasawa, S. Ikoma, and S. Nakamura, Enhancement of Clostridium difficile toxin production in biotin-limited conditions, J. Med. Microbiol, vol.44, pp.111-114, 1996.

S. Karlsson, L. G. Burman, and T. Akerlund, Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology, vol.145, pp.1683-1693, 1999.

S. Karlsson, L. G. Burman, and T. Akerlund, Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism, Microbiology, vol.154, pp.3430-3436, 2008.

A. Antunes, I. Martin-verstraete, and B. Dupuy, CcpA-mediated repression of Clostridium difficile toxin gene expression, Mol. Microbiol, vol.79, pp.882-899, 2011.

S. Karlsson, A. Lindberg, E. Norin, L. G. Burman, and T. Akerlund, Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile, Infect. Immun, vol.68, pp.5881-5888, 2000.

L. Bouillaut, W. T. Self, and A. L. Sonenshein, Proline-dependent regulation of Clostridium difficile Stickland metabolism, J. Bacteriol, vol.195, pp.844-854, 2013.

S. Karlsson, B. Dupuy, K. Mukherjee, E. Norin, L. G. Burman et al., Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature, Infect. Immun, vol.71, pp.1784-1793, 2003.

A. B. Onderdonk, B. R. Lowe, and J. G. Bartlett, Effect of environmental stress on Clostridium difficile toxin levels during continuous cultivation, Appl. Environ. Microbiol, vol.38, pp.637-641, 1979.

T. Honda, I. Hernadez, T. Katoh, and T. Miwatani, Stimulation of enterotoxin production of Clostridium difficile by antibiotics, Lancet, vol.1, p.655, 1983.

M. C. Barc, C. Depitre, G. Corthier, A. Collignon, W. J. Su et al., Effects of antibiotics and other drugs on toxin production in Clostridium difficile in vitro and in vivo, Antimicrob. Agents Chemother, vol.36, pp.1332-1335, 1992.

L. J. Drummond, D. G. Smith, and I. R. Poxton, Effects of sub-MIC concentrations of antibiotics on growth of and toxin production by Clostridium difficile, J. Med. Microbiol, vol.52, pp.1033-1038, 2003.

M. J. Aldape, A. E. Packham, D. W. Nute, A. E. Bryant, and D. L. Stevens, Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile, J. Med. Microbiol, vol.62, pp.741-747, 2013.

C. H. Chilton, J. Freeman, G. S. Crowther, S. L. Todhunter, S. Nicholson et al., Co-amoxiclav induces proliferation and cytotoxin production of Clostridium difficile ribotype 027 in a human gut model, J. Antimicrob. Chemother, vol.67, pp.951-954, 2012.

M. Gerber, C. Walch, B. Loffler, K. Tischendorf, U. Reischl et al., Effect of sub-MIC concentrations of metronidazole, vancomycin, clindamycin and linezolid on toxin gene transcription and production in Clostridium difficile, J. Med. Microbiol, vol.57, pp.776-783, 2008.

V. Braun, T. Hundsberger, P. Leukel, M. Sauerborn, and C. Streiber, Definition of the single integration site of the pathogenicity locus in Clostridium difficile, Gene, vol.181, pp.29-38, 1996.

N. Mani and B. Dupuy, Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor, Proc. Natl. Acad. Sci, vol.98, pp.5844-5849, 2001.

S. Matamouros, P. England, and B. Dupuy, Clostridium difficile toxin expression is inhibited by the novel regulator TcdC, Mol. Microbiol, vol.64, pp.1274-1288, 2007.

R. Govind and B. Dupuy, Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE, PLoS Pathog, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02440910

K. E. Dingle, B. Elliott, E. Robinson, D. Griffiths, D. W. Eyre et al.,

, Genome Biol. Evol, vol.6, pp.36-52, 2014.

S. Janezic, M. Marin, A. Martin, and M. Rupnik, A new type of toxin A-negative, toxin B-positive Clostridium difficile strain lacking a complete tcdA gene, J. Clin. Microbiol, vol.53, pp.692-695, 2015.

M. Monot, C. Eckert, A. Lemire, A. Hamiot, T. Dubois et al., Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus. Sci
URL : https://hal.archives-ouvertes.fr/hal-01271725

M. S. Brouwer, A. P. Roberts, H. Hussain, R. J. Williams, E. Allan et al., Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers, Nat. Commun, 2013.

A. R. Sirigi-reddy, B. P. Girinathan, R. Zapotocny, and R. Govind, Identification and characterization of Clostridium sordellii toxin gene regulator, J. Bacteriol, vol.195, pp.4246-4254, 2013.

G. P. Carter, S. Larcombe, L. Li, D. Jayawardena, M. M. Awad et al., Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms, Int J. Med. Microbiol, vol.304, pp.1147-1159, 2014.

V. Eichel-streiber, C. Harperath, U. Bosse, D. Hadding, and U. , Purification of two high molecular weight toxins of Clostridium difficile which are antigenically related, Microb. Pathog, vol.2, pp.307-318, 1987.

G. A. Hammond, D. M. Lyerly, and J. L. Johnson, Transcriptional analysis of the toxigenic element of Clostridium difficile, Microb. Pathog, vol.22, pp.143-154, 1997.

G. P. Carter, D. Lyras, D. L. Allen, K. E. Mackin, P. M. Howarth et al., Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator, J. Bacteriol, vol.189, pp.7290-7301, 2007.

G. P. Carter, K. E. Mackin, J. I. Rood, and D. Lyras, Regulation of toxin production in Clostridium difficile, Regulation of Bacterial Virulence

M. Vasil and A. Darwin, , pp.295-306, 2013.

J. S. Moncrief, L. A. Barroso, and T. D. Wilkins, Positive regulation of Clostridium difficile toxins, Infect. Immun, vol.65, pp.1105-1108, 1997.

N. Mani, D. Lyras, L. Barroso, P. Howarth, T. Wilkins et al., Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression, J. Bacteriol, vol.184, pp.5971-5978, 2002.

S. Raffestin, B. Dupuy, J. C. Marvaud, and M. R. Popoff, BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani, Mol. Microbiol, vol.55, pp.235-249, 2005.

B. Dupuy, S. Raffestin, S. Matamouros, N. Mani, M. R. Popoff et al., Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors, Mol. Microbiol, vol.60, pp.1044-1057, 2006.

B. Dupuy and S. Matamouros, Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase sigma-factors, Res. Microbiol, vol.157, pp.201-205, 2006.

C. W. Finn, . Jr, R. P. Silver, W. H. Habig, M. C. Hardegree et al., The structural gene for tetanus neurotoxin is on a plasmid, Science, vol.224, pp.881-884, 1984.

T. Garnier and S. T. Cole, Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene, J. Bacteriol, vol.168, pp.1189-1196, 1986.

E. C. Couchman, H. P. Browne, M. Dunn, T. D. Lawley, J. G. Songer et al., Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci, BMC Genom, vol.16, 2015.

A. Gurjar, J. Li, and B. A. Mcclane, Characterization of toxin plasmids in Clostridium perfringens type C isolates, Infect. Immun, vol.78, pp.4860-4869, 2010.

M. Monot, C. Boursaux-eude, M. Thibonnier, D. Vallenet, I. Moszer et al., Reannotation of the genome sequence of Clostridium difficile strain 630, J. Med. Microbiol, vol.60, pp.1193-1199, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01370838

M. W. Eklund, F. T. Poysky, S. M. Reed, and C. A. Smith, Bacteriophage and the toxigenicity of Clostridium botulinum type C, Science, vol.172, pp.480-482, 1971.

B. Dupuy, N. Mani, S. Katayama, and A. L. Sonenshein, Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor, Mol. Microbiol, vol.55, pp.1196-1206, 2005.

M. Bhandari, K. D. Campbell, M. D. Collins, and A. K. East, Molecular characterization of the clusters of genes encoding the botulinum neurotoxin complex in Clostridium botulinum (Clostridium argentinense) type G and nonproteolytic Clostridium botulinum type B, Curr. Microbiol, vol.35, pp.207-214, 1997.

I. Henderson, S. M. Whelan, T. O. Davis, and N. P. Minton, Genetic characterisation of the botulinum toxin complex of Clostridium botulinum strain NCTC 2916, FEMS Microbiol. Lett, vol.140, pp.151-158, 1996.

D. R. Maccannell, T. J. Louie, D. B. Gregson, M. Laverdiere, A. C. Labbe et al., Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada, J. Clin. Microbiol, vol.44, pp.2147-2152, 2006.

B. Dupuy, R. Govind, A. Antunes, and S. Matamouros, Clostridium difficile toxin synthesis is negatively regulated by TcdC, J. Med. Microbiol, vol.57, pp.685-689, 2008.

R. Govind, G. Vediyappan, R. D. Rolfe, and J. A. Fralick, Evidence that Clostridium difficile TcdC is a membrane-associated protein, J. Bacteriol, vol.188, pp.3716-3720, 2006.

H. C. Van-leeuwen, D. Bakker, P. Steindel, E. J. Kuijper, and J. Corver, Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures, Nucleic Acids Res, vol.41, pp.2382-2393, 2013.

H. J. Lipps and D. Rhodes, G-quadruplex structures: In vivo evidence and function, Trends Cell Biol, vol.19, pp.414-422, 2009.

S. R. Curry, J. W. Marsh, C. A. Muto, M. M. O'leary, A. W. Pasculle et al., tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile, J. Clin. Microbiol, vol.45, pp.215-221, 2007.

R. Murray, D. Boyd, P. N. Levett, M. R. Mulvey, and M. J. Alfa, Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of Toxin B or Toxin A, BMC Infect. Dis, vol.9, 2009.

S. D. Goldenberg and G. L. French, Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile, J. Infect, vol.62, pp.355-362, 2011.

G. P. Carter, G. R. Douce, R. Govind, P. M. Howarth, K. E. Mackin et al., The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile, PLoS Pathog, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02440921

S. T. Cartman, M. L. Kelly, D. Heeg, J. T. Heap, and N. P. Minton, Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production, Appl. Environ. Microbiol, vol.78, pp.4683-4690, 2012.

, Toxins, vol.8, pp.153-172, 2016.

D. Bakker, W. K. Smits, E. J. Kuijper, and J. Corver, TcdC does not significantly repress toxin expression in Clostridium difficile 630DeltaErm, PLoS ONE, vol.7, 2012.

M. Neumann-schaal, J. D. Hofmann, S. E. Will, and D. Schomburg, Time-resolved amino acid uptake of Clostridium difficile 630Deltaerm and concomitant fermentation product and toxin formation, BMC Microbiol, vol.15, 2015.

M. T. Kazamias and J. F. Sperry, Enhanced fermentation of mannitol and release of cytotoxin by Clostridium difficile in alkaline culture media, Appl. Environ. Microbiol, vol.61, pp.2425-2427, 1995.

J. Stulke and W. Hillen, Regulation of carbon catabolism in Bacillus species, Annu. Rev. Microbiol, vol.54, pp.849-880, 2000.

J. Deutscher, C. Francke, and P. W. Postma, How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol, Mol. Biol. Rev, vol.70, pp.939-1031, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164056

J. Deutscher, M. H. Saier, and . Jr, ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes, Proc. Natl. Acad. Sci, vol.80, pp.6790-6794, 1983.

A. Antunes, E. Camiade, M. Monot, E. Courtois, F. Barbut et al., Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile, Nucleic Acids Res, vol.40, pp.10701-10718, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01370790

J. Varga, V. L. Stirewalt, and S. B. Melville, The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens, J. Bacteriol, vol.186, pp.5221-5229, 2004.

S. Jackson, M. Calos, A. Myers, and W. T. Self, Analysis of proline reduction in the nosocomial pathogen Clostridium difficile, J. Bacteriol, vol.188, pp.8487-8495, 2006.

L. Bouillaut, T. Dubois, M. B. Francis, N. Daou, M. Monot et al., Role of the global regulator Rex in control of NAD+-regeneration in Clostridium difficile, Mol. Mic
URL : https://hal.archives-ouvertes.fr/pasteur-02438283

M. Pagels, S. Fuchs, J. Pane-farre, C. Kohler, L. Menschner et al., Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus, Mol. Microbiol, vol.76, pp.1142-1161, 2010.

D. Brekasis and M. S. Paget, A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor, vol.3

J. Embo, , vol.22, pp.4856-4865, 2003.

E. A. Sickmier, D. Brekasis, S. Paranawithana, J. B. Bonanno, M. S. Paget et al., X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing, Structure, vol.13, pp.43-54, 2005.

M. Wietzke and H. Bahl, The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum, Appl. Microbiol. Biotechnol, vol.96, pp.749-761, 2012.

S. Gyan, Y. Shiohira, I. Sato, M. Takeuchi, and T. Sato, Regulatory loop between redox sensing of the NADH/NAD + ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis, J. Bacteriol, vol.188, pp.7062-7071, 2006.

M. Schau, Y. Chen, and F. M. Hulett, Bacillus subtilis YdiH is a direct negative regulator of the cydABCD operon, J. Bacteriol, vol.186, pp.4585-4595, 2004.

D. A. Ravcheev, X. Li, H. Latif, K. Zengler, S. A. Leyn et al., Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex, J. Bacteriol, vol.194, pp.1145-1157, 2012.

G. Andre, E. Haudecoeur, M. Monot, K. Ohtani, T. Shimizu et al., Martin-Verstraete, I. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens, BMC Microbiol, p.10, 2010.

J. A. Bogdan, J. Nazario-larrieu, J. Sarwar, P. Alexander, and M. S. Blake, Bordetella pertussis autoregulates pertussis toxin production through the metabolism of cysteine, Infect. Immun, vol.69, pp.6823-6830, 2001.

T. Dubois, M. Dancer-thibonnier, M. Monot, A. Hamiot, L. Bouillaut et al., Control of Clostridium difficile physiopathology in response to cysteine availability. Infect. Immun. submitted for publication, Toxins, vol.8, p.24, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01370880

S. S. Dineen, A. C. Villapakkam, J. T. Nordman, and A. L. Sonenshein, Repression of Clostridium difficile toxin gene expression by CodY, Mol. Microbiol, vol.66, pp.206-219, 2007.

L. Saujet, M. Monot, B. Dupuy, and O. Soutourina, Martin-Verstraete, I. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile, J. Bacteriol, vol.193, pp.3186-3196, 2011.

K. Dalet, C. Briand, Y. Cenatiempo, and Y. Hechard, The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins, Curr. Microbiol, vol.41, pp.441-443, 2000.

Y. Okada, N. Okada, S. Makino, H. Asakura, S. Yamamoto et al., The sigma factor RpoN (sigma54) is involved in osmotolerance in Listeria monocytogenes, FEMS Microbiol. Lett, vol.263, pp.54-60, 2006.

V. Molle, Y. Nakaura, R. P. Shivers, H. Yamaguchi, R. Losick et al., Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis, J. Bacteriol, vol.185, pp.1911-1922, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00314424

F. Bergara, C. Ibarra, J. Iwamasa, J. C. Patarroyo, R. Aguilera et al., CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis, J. Bacteriol, vol.185, pp.3118-3126, 2003.

M. Ratnayake-lecamwasam, P. Serror, K. W. Wong, and A. L. Sonenshein, Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels, Genes Dev, vol.15, pp.1093-1103, 2001.

A. L. Sonenshein, CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria, Curr. Opin. Microbiol, vol.8, pp.203-207, 2005.

R. P. Shivers and A. L. Sonenshein, Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids, Mol. Microbiol, vol.53, pp.599-611, 2004.

S. S. Dineen, S. M. Mcbride, and A. L. Sonenshein, Integration of metabolism and virulence by Clostridium difficile CodY, J. Bacteriol, vol.192, pp.5350-5362, 2010.

E. Bordeleau, L. C. Fortier, and F. Malouin, Burrus, V. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases, PLoS Genet, 2011.

M. J. Koenigsknecht, C. M. Theriot, I. L. Bergin, C. A. Schumacher, P. D. Schloss et al., Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract, Infect. Immun, vol.83, pp.934-941, 2015.

L. J. Pettit, H. P. Browne, L. Yu, W. K. Smits, R. P. Fagan et al., Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism

K. E. Mackin, G. P. Carter, P. Howarth, J. I. Rood, and D. Lyras, Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile, PLoS ONE, vol.8, 2013.

L. J. Deakin, S. Clare, R. P. Fagan, L. F. Dawson, D. J. Pickard et al., The Clostridium difficile spo0A gene is a persistence and transmission factor, Infect. Immun, vol.80, pp.2704-2711, 2012.

A. L. Sonenshein, Control of sporulation initiation in Bacillus subtilis, Curr. Opin. Microbiol, vol.3, pp.561-566, 2000.

A. N. Edwards and S. M. Mcbride, Initiation of sporulation in Clostridium difficile: A twist on the classic model, FEMS Microbiol. Lett, vol.358, pp.110-118, 2014.

S. Underwood, S. Guan, V. Vijayasubhash, S. D. Baines, L. Graham et al., Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production, J. Bacteriol, vol.191, pp.7296-7305, 2009.

D. Higgins and J. Dworkin, Recent progress in Bacillus subtilis sporulation, FEMS Microbiol. Rev, vol.36, pp.131-148, 2012.

Z. E. Phillips and M. A. Strauch, Bacillus subtilis sporulation and stationary phase gene expression, Cell. Mol. Life Sci, vol.59, pp.392-402, 2002.

R. A. Britton, P. Eichenberger, J. E. Gonzalez-pastor, P. Fawcett, R. Monson et al.,

, Genome-wide analysis of the stationary-phase sigma factor (Sigma-H) regulon of Bacillus subtilis, J. Bacteriol, vol.184, pp.4881-4890, 2002.

C. J. Paredes, K. V. Alsaker, and E. T. Papoutsakis, A comparative genomic view of clostridial sporulation and physiology, Nat. Rev. Microbiol, vol.3, pp.969-978, 2005.

E. Steiner, A. E. Dago, D. I. Young, J. T. Heap, N. P. Minton et al., Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum, Mol. Microbiol, vol.80, pp.641-654, 2011.

V. Molle, M. Fujita, S. T. Jensen, P. Eichenberger, J. E. Gonzalez-pastor et al., The Spo0A regulon of Bacillus subtilis, Mol. Microbiol, vol.50, pp.1683-1701, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00314423

K. E. Rosenbusch, D. Bakker, E. J. Kuijper, and W. K. Smits, difficile 630Deltaerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA, PLoS ONE, vol.7, 2012.

A. N. Edwards, R. Tamayo, and S. M. Mcbride, A Novel Regulator Controls Clostridium difficile Sporulation, Motility and Toxin Production, Mol. Microbiol, 2016.

L. Slamti, S. Perchat, E. Huillet, and D. Lereclus, Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect, Toxins, vol.6, pp.2239-2255, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204354

S. Kamiya and S. P. Borriello, A non-haemagglutinating form of Clostridium difficile toxin A, J. Med. Microbiol, vol.36, pp.190-197, 1992.

K. H. Harry, R. Zhou, L. Kroos, and S. B. Melville, Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens, J. Bacteriol, vol.191, pp.2728-2742, 2009.

Y. Zhao and S. B. Melville, Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens, J. Bacteriol, vol.180, pp.136-142, 1998.

K. A. Fimlaid, J. P. Bond, K. C. Schutz, E. E. Putnam, J. M. Leung et al., Global analysis of the sporulation pathway of Clostridium difficile, PLoS Genet, vol.9, 2013.

L. Saujet, F. C. Pereira, M. Serrano, O. Soutourina, M. Monot et al., Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in Clostridium difficile, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370780

T. D. Lawley, N. J. Croucher, L. Yu, S. Clare, M. Sebaihia et al., Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores, J. Bacteriol, vol.191, pp.5377-5386, 2009.

W. Abhyankar, A. H. Hossain, A. Djajasaputra, P. Permpoonpattana, A. Ter-beek et al., In pursuit of protein targets: Proteomic characterization of bacterial spore outer layers, J. Proteome Res, vol.12, pp.4507-4521, 2013.

C. P. Cassona, S. Ramalhete, W. Antunes, B. Dupuy, M. Serrano et al., The link between toxin production and spore formation in the intestinal pathogen Clostridium difficile, Proceedings of the 9th international conference on the molecular biology and pathogenesis of the clostridia, 2015.

R. Arya and S. A. Princy, An insight into pleiotropic regulators Agr and Sar: Molecular probes paving the new way for antivirulent therapy, Future Microbiol, vol.8, pp.1339-1353, 2013.

R. A. Stabler, M. He, L. Dawson, M. Martin, E. Valiente et al., Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium, Genome Biol, vol.10, 2009.

G. L. Marsden, I. J. Davis, V. J. Wright, M. Sebaihia, E. J. Kuijper et al., Array comparative hybridisation reveals a high degree of similarity between UK and European clinical isolates of hypervirulent Clostridium difficile, BMC Genom, p.11, 2010.

C. Darkoh, H. L. Dupont, S. J. Norris, and H. B. Kaplan, Toxin synthesis by Clostridium difficile is regulated through quorum signaling, MBio, vol.6, 2015.

M. J. Martin, S. Clare, D. Goulding, A. Faulds-pain, L. Barquist et al., The agr locus regulates virulence and colonization genes in Clostridium difficile 027, J. Bacteriol, vol.195, pp.3672-3681, 2013.

J. Chen and B. A. Mcclane, Role of the Agr-like quorum-sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795, Infect. Immun, vol.80, pp.3008-3017, 2012.

J. Chen, J. I. Rood, and B. A. Mcclane, Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system, MBio, vol.2, 2011.

J. Li, J. Chen, J. E. Vidal, and B. A. Mcclane, The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603, Infect. Immun, vol.79, pp.2451-2459, 2011.

K. Ohtani, Y. Yuan, S. Hassan, R. Wang, Y. Wang et al., Virulence gene regulation by the agr system in Clostridium perfringens, J. Bacteriol, vol.191, pp.3919-3927, 2009.

J. E. Vidal, M. Ma, J. Saputo, J. Garcia, F. A. Uzal et al., Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685, Mol. Microbiol, vol.83, pp.179-194, 2012.

E. Steiner, J. Scott, N. P. Minton, and K. Winzer, An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum, Appl. Environ. Microbiol, vol.78, pp.1113-1122, 2012.

C. M. Cooksley, I. J. Davis, K. Winzer, W. C. Chan, M. W. Peck et al., Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum, Appl. Environ. Microbiol, vol.76, pp.4448-4460, 2010.

C. S. Pereira, J. A. Thompson, and K. B. Xavier, AI-2-mediated signalling in bacteria, FEMS Microbiol. Rev, vol.37, pp.156-181, 2013.

M. F. Hullo, S. Auger, O. Soutourina, O. Barzu, M. Yvon et al., Martin-Verstraete, I. Conversion of methionine to cysteine in Bacillus subtilis and its regulation, J. Bacteriol, vol.189, pp.187-197, 2007.

A. S. Lee and K. P. Song, LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile, Biochem. Biophys. Res. Commun, vol.335, pp.659-666, 2005.

G. P. Carter, D. Purdy, P. Williams, and N. P. Minton, Quorum sensing in Clostridium difficile: Analysis of a luxS-type signalling system, J. Med. Microbiol, vol.54, pp.119-127, 2005.

B. Yun, S. Oh, M. Song, Y. S. Hong, S. Park et al., Inhibitory Effect of Epigallocatechin Gallate on the Virulence of Clostridium difficile PCR Ribotype 027, J. Food Sci, vol.80, pp.2925-2931, 2015.

K. Ohtani, H. Hayashi, and T. Shimizu, The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens, Mol. Microbiol, vol.44, pp.171-179, 2002.

U. Romling, M. Y. Galperin, and M. Gomelsky, Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol, Mol. Biol. Rev, vol.77, pp.1-52, 2013.

X. Gao, X. Dong, S. Subramanian, P. M. Matthews, C. A. Cooper et al., Engineering of Bacillus subtilis strains to allow rapid characterization of heterologous diguanylate cyclases and phosphodiesterases, Appl. Environ. Microbiol, vol.3, pp.6167-6174, 2014.

O. A. Soutourina, M. Monot, P. Boudry, L. Saujet, C. Pichon et al., Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370770

J. Peltier, H. A. Shaw, E. C. Couchman, L. F. Dawson, L. Yu et al., Cyclic diGMP regulates production of sortase substrates of Clostridium difficile and their surface exposure through ZmpI protease-mediated cleavage, J. Biol. Chem, vol.290, pp.24453-24469, 2015.

E. Bordeleau, E. B. Purcell, D. A. Lafontaine, L. C. Fortier, R. Tamayo et al., Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile, J. Bacteriol, vol.197, pp.819-832, 2015.

E. B. Purcell, R. W. Mckee, E. Bordeleau, V. Burrus, and R. Tamayo, Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile, J. Bacteriol, vol.198, pp.565-577, 2015.

E. B. Purcell, R. W. Mckee, S. M. Mcbride, C. M. Waters, and R. Tamayo, Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile, J. Bacteriol, vol.194, pp.3307-3316, 2012.

P. J. Hensbergen, O. I. Klychnikov, D. Bakker, I. Dragan, M. L. Kelly et al., Clostridium difficile secreted Pro-Pro endopeptidase PPEP, issue.1

, ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831, FEBS Lett, vol.589, pp.3952-3958, 2015.

R. W. Mckee, M. R. Mangalea, E. B. Purcell, E. K. Borchardt, and R. Tamayo, The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD, J. Bacteriol, vol.195, pp.5174-5185, 2013.

I. El-meouche, J. Peltier, M. Monot, O. Soutourina, M. Pestel-caron et al., Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR, PLoS ONE, issue.8, p.83748, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370779

A. Aubry, G. Hussack, W. Chen, R. Kuolee, S. M. Twine et al., Modulation of toxin production by the flagellar regulon in Clostridium difficile, Infect. Immun, vol.80, pp.3521-3532, 2012.

S. T. Baban, S. A. Kuehne, A. Barketi-klai, S. T. Cartman, M. L. Kelly et al., The role of flagella in Clostridium difficile pathogenesis: Comparison between a non-epidemic and an epidemic strain, PLoS ONE, vol.8, 2013.

T. C. Dingle, G. L. Mulvey, and G. Armstrong, Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters, Infect. Immun, vol.79, pp.4061-4067, 2011.

S. M. Twine, C. W. Reid, A. Aubry, D. R. Mcmullin, K. M. Fulton et al., Motility and flagellar glycosylation in Clostridium difficile, J. Bacteriol, vol.191, pp.7050-7062, 2009.

H. Brussow and R. W. Hendrix, Phage genomics: Small is beautiful, Cell, vol.108, pp.13-16, 2002.

H. Brussow, C. Canchaya, and W. D. Hardt, Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol, Mol. Biol. Rev, vol.68, pp.560-602, 2004.

K. R. Hargreaves and M. R. Clokie, A Taxonomic Review of Clostridium difficile Phages and Proposal of a Novel Genus, Phimmp04likevirus". Viruses, vol.7, pp.2534-2541, 2015.

L. C. Fortier and O. Sekulovic, Importance of prophages to evolution and virulence of bacterial pathogens, vol.4, pp.354-365, 2013.

R. Govind, G. Vediyappan, R. D. Rolfe, B. Dupuy, and J. A. Fralick, Bacteriophage-mediated toxin gene regulation in Clostridium difficile, J. Virol, vol.83, pp.12037-12045, 2009.

R. Williams, E. Meader, M. Mayer, A. Narbad, A. P. Roberts et al., Determination of the attP and attB sites of phage CD27 from Clostridium difficile NCTC 12727, J. Med. Microbiol, vol.62, pp.1439-1443, 2013.

O. Sekulovic, M. Meessen-pinard, and L. C. Fortier, Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens, J. Bacteriol, vol.193, pp.2726-2734, 2011.

S. Goh, B. J. Chang, and T. V. Riley, Effect of phage infection on toxin production by Clostridium difficile, J. Med. Microbiol, vol.54, pp.129-135, 2005.

I. Erill, S. Campoy, and J. Barbe, Aeons of distress: An evolutionary perspective on the bacterial SOS response, FEMS Microbiol. Rev, vol.31, pp.637-656, 2007.

M. Butala, D. Zgur-bertok, and S. J. Busby, The bacterial LexA transcriptional repressor, Cell. Mol. Life Sci, vol.66, pp.82-93, 2009.

B. M. Walter, S. T. Cartman, N. P. Minton, M. Butala, and M. Rupnik, The SOS Response Master Regulator LexA Is Associated with Sporulation, Motility and Biofilm Formation in Clostridium difficile, PLoS ONE, vol.10, 2015.

R. Singh, K. R. Ledesma, K. T. Chang, and V. H. Tam, Impact of recA on levofloxacin exposure-related resistance development, Antimicrob. Agents Chemother, vol.54, pp.4262-4268, 2010.

N. J. Pultz and C. J. Donskey, Effect of antibiotic treatment on growth of and toxin production by Clostridium difficile in the cecal contents of mice, Antimicrob. Agents Chemother, vol.49, pp.3529-3532, 2005.

B. M. Walter, M. Rupnik, V. Hodnik, G. Anderluh, B. Dupuy et al., The LexA regulated genes of the Clostridium difficile, BMC Microbiol, vol.14, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00976526

C. P. Selby, E. M. Witkin, and A. Sancar, Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: In vitro complementation with purified coupling factor, Proc. Natl. Acad. Sci, vol.88, pp.11574-11578, 1991.

N. J. Savery, The molecular mechanism of transcription-coupled DNA repair, Trends Microbiol, vol.15, pp.326-333, 2007.

T. T. Saxowsky and P. W. Doetsch, RNA polymerase encounters with DNA damage: Transcription-coupled repair or transcriptional mutagenesis?, Chem. Rev, vol.106, pp.474-488, 2006.

S. E. Willing, E. J. Richards, L. Sempere, A. G. Dale, S. M. Cutting et al., Increased toxin expression in a Clostridium difficile mfd mutant, BMC Microbiol, vol.15, 2015.

E. A. Robleto, H. A. Martin, and M. Pedraza-reyes, Mfd and transcriptional derepression cause genetic diversity in Bacillus subtilis, Front. Biosci, vol.4, pp.1246-1254, 2012.

B. R. Belitsky and A. L. Sonenshein, Roadblock repression of transcription by Bacillus subtilis CodY, J. Mol. Biol, vol.411, pp.729-743, 2011.

J. M. Zalieckas, L. V. Wray, . Jr, A. E. Ferson, and S. H. Fisher, Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons, Mol. Microbiol, vol.27, pp.1031-1038, 1998.