G. D. Norata, G. Caligiuri, T. Chavakis, G. Matarese, M. G. Netea et al., , p.557

F. M. Berg, The Cellular and Molecular Basis of Translational Immunometabolism. 20 intracellular bacterial pathogens, Front Cell Infect Microbiol, vol.3, p.24, 2015.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: the 603 metabolic requirements of cell proliferation, Science, vol.324, pp.1029-1033, 2009.

S. Basu, Personalized versus evidence-based medicine with PET-based imaging, Nat Rev, p.605, 2010.

, Clin Oncol, vol.7, pp.665-668

O. Warburg, On the origin of cancer cells, Science, vol.123, pp.309-314, 1956.

O. Warburg, K. Posener, and E. Negelein, Uber den Stoffwechsel der Carcinomzelle, Biochem Z, vol.608, pp.309-344, 1924.

W. H. Koppenol, P. L. Bounds, and C. V. Dang, Otto Warburg's contributions to current concepts of 610 cancer metabolism, 2011.

P. S. Ward and C. B. Thompson, Signaling in control of cell growth and metabolism, Cold Spring, p.612, 2012.

, Harb Perspect Biol, vol.4, p.6783

P. S. Ward and C. B. Thompson, Metabolic reprogramming: a cancer hallmark even warburg did 614 not anticipate, Cancer Cell, vol.21, pp.297-308, 2012.

N. N. Pavlova and C. B. Thompson, The Emerging Hallmarks of Cancer Metabolism, Cell Metab, vol.616, pp.27-47, 2016.

R. J. Deberardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, The biology of cancer: 618 metabolic reprogramming fuels cell growth and proliferation, Cell Metab, vol.7, pp.11-20, 2008.

M. V. Liberti and J. W. Locasale, The Warburg Effect: How Does it Benefit Cancer Cells?, Biochemical Sciences, vol.620, pp.211-218, 2016.

R. Oren, A. E. Farnham, K. Saito, E. Milofsky, and M. L. Karnovsky, Metabolic patterns in three 622 types of phagocytizing cells, The Journal of Cell Biology, vol.17, pp.487-501, 1963.

T. Wang, C. Marquardt, and J. Foker, Aerobic glycolysis during lymphocyte proliferation. 624, Nature, vol.261, pp.702-705, 1976.

P. Newsholme, R. Curi, S. Gordon, and E. A. Newsholme, Metabolism of glucose, glutamine, 626 long-chain fatty acids and ketone bodies by murine macrophages, Biochem. J, vol.239, pp.121-125, 1986.

J. Michl, D. J. Ohlbaum, and S. C. Silverstein, 2-Deoxyglucose selectively inhibits Fc and 628 complement receptor-mediated phagocytosis in mouse peritoneal macrophages II. Dissociation of 629 the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation, Journal of 630 Experimental Medicine, vol.144, pp.1484-1493, 1976.

J. Zhang, E. Nuebel, D. Wisidagama, K. Setoguchi, J. S. Hong et al., , p.632

C. S. Malone, C. M. Koehler, and M. A. Teitell, Measuring energy metabolism in cultured cells, 633 including human pluripotent stem cells and differentiated cells, Nat Protoc, vol.7, pp.1068-1085, 2012.

C. H. Johnson, J. Ivanisevic, and G. Siuzdak, Metabolomics: beyond biomarkers and towards 635 mechanisms, Nat Rev Mol Cell Biol, vol.17, pp.451-459, 2016.

K. Murphy and C. Weaver, Janeway's Immunobiology Garland Science, 2016.

R. D. Michalek, V. A. Gerriets, S. R. Jacobs, A. N. Macintyre, N. J. Maciver et al., , p.638

A. G. Nichols and J. C. Rathmell, Cutting edge: distinct glycolytic and lipid oxidative metabolic 639 programs are essential for effector and regulatory CD4+ T cell subsets, The Journal of 640 Immunology, vol.186, pp.3299-3303, 2011.

M. Peng, N. Yin, S. Chhangawala, K. Xu, C. Leslie et al., Aerobic glycolysis promotes T 642 helper 1 cell differentiation through an epigenetic mechanism, Science, vol.354, pp.481-484, 2016.

L. Araujo, P. Khim, H. Mkhikian, C. Mortales, and M. Demetriou, Glycolysis and 644 glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-645 glycosylation, vol.6, p.21330, 2017.

E. M. Palsson-mcdermott, A. M. Curtis, G. Goel, M. Lauterbach, F. J. Sheedy et al., , p.647

M. Bosch, S. R. Quinn, R. Domingo-fernandez, D. Johnston, J. Jiang et al., , p.649

, Pyruvate kinase M2 regulates Hif-1? activity and IL-1? induction and is a critical 650 determinant of the warburg effect in LPS-activated macrophages, Cell Metab, vol.21, pp.65-80, 2015.

L. O'neill and E. J. Pearce, Immunometabolism governs dendritic cell and macrophage 652 function, Journal of Experimental Medicine, vol.213, pp.15-23, 2016.

B. Everts, E. Amiel, G. Van-der-windt, T. C. Freitas, R. Chott et al., , p.654

, Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic 655 cells, Blood, vol.120, pp.1422-1431, 2012.

E. Pearce and E. J. Pearce, Metabolic pathways in immune cell activation and quiescence, Immunity, vol.657, pp.633-643, 2013.

C. A. Doughty, B. F. Bleiman, D. J. Wagner, F. J. Dufort, and J. M. Mataraza, , p.659, 2006.

, Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of 660 phosphatidylinositol 3-kinase signaling in the glycolytic control of growth, Blood, vol.107, pp.4458-4465

C. M. Gardiner and D. K. Finlay, What Fuels Natural Killers? Metabolism and NK Cell 662 Responses, Front Immunol, vol.8, p.367, 2017.

C. J. Fox, P. S. Hammerman, and C. B. Thompson, Fuel feeds function: energy metabolism and the 664 T-cell response, Nat. Rev. Immunol, vol.5, pp.844-852, 2005.

L. Z. Shi, R. Wang, G. Huang, P. Vogel, N. G. Green et al., HIF1alpha-dependent 666 glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg 667 cells, Journal of Experimental Medicine, vol.208, pp.1367-1376, 2011.

G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-mcdermott, A. F. Mcgettrick et al., , p.669

N. J. Bernard, B. Kelly, N. H. Foley, L. Zheng, A. Gardet et al., , p.670

B. E. Caffrey, K. Pierce, S. Walmsley, F. C. Beasley, E. Cummins et al., , p.671

H. Masters, S. L. Gottlieb, E. Kelly, V. P. Clish, C. Auron et al., , p.672, 2013.

, Succinate is an inflammatory signal that induces IL-1? through HIF-1?, Nature, vol.496, pp.238-242

V. Infantino, P. Convertini, L. Cucci, M. A. Panaro, D. Noia et al., , p.674

V. , The mitochondrial citrate carrier: a new player in inflammation, Biochem. J, vol.438, pp.433-675, 2011.

L. O'neill, A broken krebs cycle in macrophages, Immunity, vol.42, pp.393-394, 2015.

J. Price and R. E. Vance, The macrophage paradox, Immunity, vol.41, pp.685-693, 2014.

W. Eisenreich, T. Rudel, J. Heesemann, and W. Goebel, To Eat and to Be Eaten: Mutual, vol.679, 2017.

, Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection

, Front Cell Infect Microbiol, vol.7, p.316

D. Alonso and W. J. Nungester, Comparative study of host resistance of guinea pigs and rats, 1956.

, The effect of pneumococcal products on glycolysis and oxygen uptake by polymorphonuclear 683 leucocytes, J. Infect. Dis, vol.99, pp.174-181

G. C. Hard, Some biochemical aspects of the immune macrophage, Br J Exp Pathol, vol.51, pp.97-685, 1970.

E. Lachmandas, L. Boutens, J. M. Ratter, A. Hijmans, G. J. Hooiveld et al., , p.687

J. Fransen, R. H. Houtkooper, R. Van-crevel, M. G. Netea, and R. Stienstra, Microbial 688 stimulation of different Toll-like receptor signalling pathways induces diverse metabolic 689 programmes in human monocytes, Nature Microbiology, vol.2, p.16246, 2016.

E. L. Mills, B. Kelly, A. Logan, A. Costa, M. Varma et al., , p.691

E. Gottlieb, I. Latorre, S. C. Corr, G. Mcmanus, D. Ryan et al., , p.692

C. Frezza, M. P. Murphy, and L. A. O'neill, Succinate Dehydrogenase Supports Metabolic, vol.693, p.22, 2016.

, Repurposing of Mitochondria to Drive Inflammatory Macrophages, Cell, vol.167, pp.457-470

A. K. Jha, S. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova et al.,

K. Stewart, K. M. Ashall, J. Everts, B. Pearce, E. J. Driggers et al., Network 696 integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate 697 macrophage polarization, Immunity, vol.42, pp.419-430, 2015.

A. Michelucci, T. Cordes, J. Ghelfi, A. Pailot, N. Reiling et al., , p.699

A. Rausell, M. Buttini, C. L. Linster, E. Medina, R. Balling et al., , 2013.

, gene 1 protein links metabolism to immunity by catalyzing itaconic acid production, Proc. Natl

, Acad. Sci. U.S.A, vol.110, pp.7820-7825

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., , p.703

L. B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F. O. Martinez et al., , p.704

G. Saeij, J. P. Schultze, J. L. Shirey, K. A. Sica, A. Suttles et al.,

T. A. Wynn, Macrophage activation and polarization: nomenclature and experimental 706 guidelines, Immunity, vol.41, pp.14-20, 2014.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev, 2008.

, Immunol, vol.8, pp.958-969

R. Través, P. G. Cuenca, J. Rico, D. Aragonés, J. Martín-sanz et al., , p.710

L. Boscá, Substrate fate in activated macrophages: a comparison between innate, classic, 711 and alternative activation, The Journal of Immunology, vol.185, pp.605-614, 2010.

L. Galván-peña-s-&-o'neill, Metabolic reprograming in macrophage polarization, Front, vol.713, 2014.

, Immunol, vol.5, p.420

P. Liu, H. Wang, X. Li, T. Chao, T. Teav et al., , p.715

M. Vavakova, C. Muret, K. Debackere, M. Mazzone, H. Huang et al., , p.716

, C (2017) ?-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic 717 reprogramming, Nat Immunol, vol.18, pp.985-994

F. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for 719 reassessment, 1000.

P. Murray and T. A. Wynn, Obstacles and opportunities for understanding macrophage 721 polarization, J. Leukoc. Biol, vol.89, pp.557-563, 2011.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. 723 Invest, vol.122, pp.787-795, 2012.

D. C. Lacey, A. Achuthan, A. J. Fleetwood, H. Dinh, J. Roiniotis et al., , p.725

A. D. Cook and J. A. Hamilton, Defining GM-CSF-and macrophage-CSF-dependent 726 macrophage responses by in vitro models, The Journal of Immunology, vol.188, pp.5752-5765, 2012.

J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs et al., , p.728

L. Schmidleithner, H. Ganesan, A. Nino-castro, M. R. Mallmann, L. Labzin et al., , p.729

M. , L. E. Freeman, T. C. Ulas, T. Schultze, and J. L. , Transcriptome-based network analysis 730 reveals a spectrum model of human macrophage activation, Immunity, vol.40, pp.274-288, 2014.

N. Gillmaier, A. Götz, A. Schulz, W. Eisenreich, and W. Goebel, Metabolic responses of primary 732 and transformed cells to intracellular Listeria monocytogenes, PLoS ONE, vol.7, 2012.

P. Escoll, M. Rolando, L. Gomez-valero, and C. Buchrieser, From amoeba to macrophages: 734 exploring the molecular mechanisms of Legionella pneumophila infection in both hosts, 2013.

, Top. Microbiol. Immunol, vol.376, pp.1-34

J. Shin, Y. , J. Yoon, Y. J. Cho, S. Kang et al., , 2011.

, NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis, J, vol.738

, Proteome Res, vol.10, pp.2238-2247

S. Billig, M. Schneefeld, C. Huber, G. A. Grassl, W. Eisenreich et al., Lactate oxidation, 2017.

S. L. Davis, E. L. Nuermberger, P. K. Um, C. Vidal, B. Jedynak et al., Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography 743 correlates with bactericidal activity of tuberculosis drug treatment, Antimicrob. Agents Chemother, vol.744, pp.4879-4884, 2009.

V. Singh, S. Jamwal, R. Jain, P. Verma, R. Gokhale et al., Mycobacterium tuberculosis-746 driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype, 2012.

, Cell Host Microbe, vol.12, pp.669-681

M. Kim, H. C. Wainwright, M. Locketz, L. Bekker, G. B. Walther et al., , p.749

F. Hsu, U. Wiehart, L. Tsenova, G. Kaplan, and D. G. Russell, Caseation of human tuberculosis 750 granulomas correlates with elevated host lipid metabolism, EMBO Mol Med, vol.2, pp.258-274, 2010.

P. Escoll, M. Rolando, L. Gomez-valero, and C. Buchrieser, From Amoeba to Macrophages: 752 Exploring the Molecular Mechanisms of Legionella pneumophila Infection in Both Hosts, 2013.

, Top. Microbiol. Immunol

R. R. Isberg, T. J. O'connor, and M. Heidtman, The Legionella pneumophila replication vacuole: 755 making a cosy niche inside host cells, Nat Rev Micro, vol.7, pp.13-24, 2009.

P. Escoll, S. Mondino, M. Rolando, and C. Buchrieser, Targeting of host organelles by 757 pathogenic bacteria: a sophisticated subversion strategy, Nat Rev Micro, vol.14, pp.5-19, 2016.

P. Dolezal, A. M. Tong, J. Jiang, J. Marobbio, C. M. Lee et al., , p.759

A. Mousnier, G. Frankel, G. Giannuzzi, F. Palmieri, K. Gabriel et al., , p.760

T. , Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection, 2012.

M. Akamine, F. Higa, N. Arakaki, K. Kawakami, K. Takeda et al., Differential 763 roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella 764 pneumophila, Infection and Immunity, vol.73, pp.352-361, 2005.

K. Archer and C. R. Roy, MyD88-dependent responses involving toll-like receptor 2 are 766 important for protection and clearance of Legionella pneumophila in a mouse model of 767, 2006.

, Legionnaires' disease. Infection and Immunity, vol.74, pp.3325-3333

T. R. Hawn, K. D. Smith, A. Aderem, and S. J. Skerrett, Myeloid differentiation primary response 769, 2006.

, gene (88)-and toll-like receptor 2-deficient mice are susceptible to infection with aerosolized 770 Legionella pneumophila, J. Infect. Dis, vol.193, pp.1693-1702

I. Häuslein, T. Sahr, P. Escoll, N. Klausner, W. Eisenreich et al., , p.772, 2017.

, pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism

, Open Biol, vol.7, p.170149

K. Snell, Y. Natsumeda, J. N. Eble, J. Glover, and G. Weber, Enzymic imbalance in serine 775 metabolism in human colon carcinoma and rat sarcoma, Br. J. Cancer, vol.57, pp.87-90, 1988.

H. A. Saka and R. H. Valdivia, Acquisition of nutrients by Chlamydiae: unique challenges of 777 living in an intracellular compartment, Current Opinion in Microbiology, vol.13, pp.4-10, 2010.

A. Omsland, J. Sager, V. Nair, D. E. Sturdevant, and T. Hackstadt, Developmental stage-specific 779 metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium, Proc. Natl, 2012.

, Acad. Sci. U.S.A, vol.109, 19781.

E. Madan, R. Gogna, M. Bhatt, U. Pati, P. Kuppusamy et al., Regulation of glucose 782 metabolism by p53: emerging new roles for the tumor suppressor, Oncotarget, vol.2, pp.948-957, 2011.

F. Schwartzenberg-bar-yoseph, M. Armoni, and E. Karnieli, The Tumor Suppressor, pp.53-784, 2004.

, Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression, Cancer Res, vol.64, pp.2627-785

S. Wessler, The issue of animal models of thrombosis, Ann. N. Y. Acad. Sci, vol.556, p.24, 1989.

J. Mestas and C. Hughes, Of mice and not men: differences between mouse and human 788 immunology, J. Immunol, vol.172, pp.2731-2738, 2004.

A. C. Thomas and J. T. Mattila, Of mice and men": arginine metabolism in macrophages, 2014.