R. Ross, The role of the mosquito in the evolution of the malaria parasite Lancet, vol.2, p.489, 1898.

M. J. Conway, T. M. Colpitts, and E. , Fikrig Role of the vector in arbovirus transmission, Annu. Rev. Virol, vol.1, pp.71-88, 2014.

J. Schneider-schaulies, Cellular receptors for viruses: links to tropism and pathogenesis J, Gen. Virol, vol.81, pp.1413-1429, 2000.

J. P. Vanderberg and U. , Frevert Intravital microscopy demonstrating antibody-mediated immobilisation of sporozoites injected into skin by mosquitoes, Int. J. Parasitol, vol.34, pp.991-996, 2004.

R. Amino, S. Thiberge, B. Martin, S. Celli, S. Shorte et al., Ménard Quantitative imaging of Plasmodium transmission from mosquito to mammal, Nat. Med, vol.12, pp.220-224, 2006.

H. E. Shortt and P. C. , Garnham Pre-erythrocytic stage in mammalian malaria parasites, Nature, vol.161, p.126, 1948.

J. P. , Vanderberg Plasmodium berghei exoerythrocytic forms develop only in the liver, Trans. R. Soc. Trop. Med. Hyg, vol.75, pp.904-905, 1981.

, Version: Postprint (identical content as published paper) This is a self-archived document from i3S -Instituto de Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our publications

P. Gueirard, J. Tavares, S. Thiberge, F. Bernex, T. Ishino et al., Amino Development of the malaria parasite in the skin of the mammalian host, Proc. Natl. Acad. Sci. U S A, vol.107, pp.18640-18645, 2010.

E. Wisse, F. Jacobs, B. Topal, P. Frederik, and B. , De Geest The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer Gene Ther, vol.15, pp.1193-1199, 2008.

M. De-niz, R. R. Stanway, R. Wacker, D. Keller, and V. T. , Heussler An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle, Malar J, vol.15, p.232, 2016.

B. Franke-fayard, C. J. Janse, M. Cunha-rodrigues, J. Ramesar, P. Büscher et al., Waters Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.11468-11473, 2005.

B. Franke-fayard, A. P. Waters, and C. J. , Janse Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice, Nat. Protoc, vol.1, pp.476-485, 2006.

A. Mwakingwe, L. M. Ting, S. Hochman, J. Chen, P. Sinnis et al., Kim Noninvasive realtime monitoring of liver-stage development of bioluminescent Plasmodium parasites, J. Infect. Dis, vol.200, pp.1470-1478, 2009.

I. H. Ploemen, M. Prudêncio, B. G. Douradinha, J. Ramesar, J. Fonager et al., Franke-Fayard Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging, PLoS ONE, vol.18, p.7881, 2009.

A. S. Yang, M. T. O'neill, C. Jennison, S. Lopaticki, C. C. Allison et al., J.A. Boddey Cell traversal activity is important for Plasmodium falciparum liver infection in humanized mice Cell Rep, vol.18, pp.3105-3116, 2017.

H. Matsuoka, H. Tomita, R. Hattori, M. Arai, and M. , Hirai Visualization of Malaria parasites in the skin using the luciferase transgenic parasite, Plasmodium berghei Trop. Med. Health, vol.43, pp.53-61, 2015.

A. C. Stacer, S. Nyati, P. Moudgil, R. Iyengar, K. E. Luker et al., NanoLuc reporter for dual luciferase imaging in living animals, Mol. Imaging, vol.12, pp.1-13, 2013.

S. L. Jacques, Optical properties of biological tissues: a review, Phys. Med. Biol, vol.58, pp.37-61, 2013.

M. L. Foucault, L. Thomas, S. Goussard, B. R. Branchini, and C. , Grillot-Courvalin In vivo bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice, Appl. Environ. Microbiol, vol.76, pp.264-274, 2010.

, Version: Postprint (identical content as published paper) This is a self-archived document from i3S -Instituto de Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our publications

A. P. Mclatchie, H. Burrell-saward, E. Myburgh, M. D. Lewis, T. H. Ward et al., Highly sensitive in vivo imaging of Trypanosoma brucei expressing "red-shifted" luciferase, PLoS Negl. Trop. Dis, vol.7, p.2571, 2013.

B. Franke-fayard, D. Djokovic, M. W. Dooren, J. Ramesar, A. P. Waters et al., Janse Simple and sensitive antimalarial drug screening in vitro and in vivo using transgenic luciferase expressing Plasmodium berghei parasites, Int. J. Parasitol, vol.38, pp.1651-1662, 2008.

N. A. Graça, L. Gaspar, D. M. Costa, I. Loureiro, P. K. Thoo-lin et al., Cordeiro-da-Silva Activity of bisnaphthalimidopropyl derivatives against Trypanosoma brucei, Antimicrob. Agents Chemother, vol.60, pp.2532-2536, 2016.

D. Sereno, G. Roy, J. L. Lemesre, B. Papadopoulou, and M. , Ouellette DNA transformation of Leishmania infantum axenic amastigotes and their use in drug screening, Antimicrob. Agents Chemother, vol.45, pp.1168-1173, 2001.

R. Amino, S. Thiberge, S. Blazquez, P. Baldacci, O. Renaud et al., Ménard Imaging malaria sporozoites in the dermis of the mammalian host, Nat. Protoc, vol.2, pp.1705-1712, 2007.

C. J. Janse, J. Ramesar, and A. P. , Waters High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei, Nat. Protoc, vol.1, pp.346-356, 2006.

I. Loureiro, J. Faria, C. Clayton, S. M. Ribeiro, N. Roy et al., Cordeiro-da-Silva Knockdown of asparagine synthetase A renders Trypanosoma brucei auxotrophic to asparagine, PLoS Negl. Trop. Dis, vol.7, p.2578, 2013.

J. Tavares, A. Ouaissi, P. Kong, I. Lin, S. Loureiro et al., Cordeiro-da-Silva Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1 ChemMedChem, vol.5, pp.140-147, 2010.

R. Ménard, J. Tavares, I. Cockburn, M. Markus, F. Zavala et al., Amino Looking under the skin: the first steps in malarial infection and immunity, Nat. Rev. Microbiol, vol.11, pp.701-712, 2013.

P. Kaye and P. Scott, Leishmaniasis: complexity at the host-pathogen interface, Nat. Rev. Microbiol, vol.9, pp.604-615, 2011.

L. I. Mccall, W. W. Zhang, and G. , Matlashewski Determinants of the development of Visceral Leishmaniasis disease, PLoS Pathog, vol.9, p.1003053, 2013.

P. G. Kennedy, Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness), Lancet Neurol, vol.12, pp.186-194, 2013.

S. C. Shin, J. P. Vanderberg, and J. A. , Version: Postprint (identical content as published paper) This is a self-archived document from i3S -Instituto de Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our publications, J Protozool, vol.29, pp.448-454, 1982.

W. Y. Xu, X. X. Wang, J. Qi, J. H. Duan, and F. S. Huang, Plasmodium yoelii: influence of immune modulators on the development of the liver stage, Exp. Parasitol, vol.126, pp.254-258, 2010.

M. De-niz, P. C. Burda, G. Kaiser, H. A. Portillo, T. Spielmann et al., Heussler Progress in imaging methods: insights gained into Plasmodium biology, Nat. Rev. Microbiol, vol.15, pp.37-54, 2017.

A. F. Cowman and B. S. , Crabb Invasion of red blood cells by malaria parasites Cell, vol.124, pp.755-766, 2006.

C. V. Greenway and G. E. , Lister Capacitance effects and blood reservoir function in the splanchnic vascular bed during non-hypotensive haemorrhage and blood volume expansion in anaesthetized cats, J. Physiol, vol.237, pp.279-294, 1974.

W. W. Lautt, Hepatic Circulation: Physiology and Pathophysiology, 2009.

G. Biozzi, B. Benacerraf, and B. N. , Halpern Quantitative study of the granulopectic activity of the reticulo-endothelial system: II: A study of the kinetics of the granulopectic activity of the R.E.S. in Relation to the Dose of Carbon Injected. Relationship between the weight of the organs and their activity, Br. J. Exp. Pathol, vol.34, pp.441-457, 1953.

B. Benacerraf, M. M. Sebestyen, and S. , Schlossman A quantitative study of the kinetics of blood clearance of P32-labelled Escherichia coli and Staphylococci by the reticuloendothelial system, J. Exp. Med, vol.110, pp.27-48, 1959.

K. T. Brunner, D. Hurez, R. T. Mccluskey, and B. , Benacerraf Blood clearance of P32-labeled vesicular stomatitis and Newcastle disease viruses by the reticuloendothelial system in mice, J Immunol, vol.85, pp.99-105, 1960.

Z. Zeng, B. G. Surewaard, C. H. Wong, J. A. Geoghegan, C. N. Jenne et al., Kubes CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria, Cell Host Microbe, vol.20, pp.99-106, 2016.

L. P. Ganesan, S. Mohanty, J. Kim, K. R. Clark, J. M. Robinson et al., Anderson Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium PLoS Pathog, vol.7, p.1002281, 2011.

S. P. Broadley, A. Plaumann, R. Coletti, C. Lehmann, A. Wanisch et al., Verschoor Dual-track clearance of circulating bacteria balances rapid restoration of blood sterility with induction of adaptive immunity Cell Host Microbe, vol.20, pp.36-48, 2016.

J. Tavares, P. Formaglio, S. Thiberge, E. Mordelet, N. Van-rooijen et al., Amino Role of host cell traversal by the malaria sporozoite during liver infection, J. Exp. Med, vol.210, pp.905-915, 2013.

, Version: Postprint (identical content as published paper) This is a self-archived document from i3S -Instituto de Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our publications

S. J. Cha, M. S. Kim, A. Pandey, and M. , Jacobs-Lorena Identification of GAPDH on the surface of Plasmodium sporozoites as a new candidate for targeting malaria liver invasion, J. Exp. Med, vol.213, pp.2099-2112, 2016.

S. J. Cha, K. Park, P. Srinivasan, C. W. Schindler, N. Van-rooijen et al., Jacobs-Lorena CD68 acts as a major gateway for malaria sporozoite liver infection, J. Exp. Med, vol.212, pp.1391-1403, 2015.

S. G. Vreden, R. W. Sauerwein, J. P. Verhave, N. Van-rooijen, J. H. Meuwissen et al., Van Den Broek Kupffer cell elimination enhances development of liver schizonts of Plasmodium berghei in rats, Infect. Immun, pp.1936-1939, 1993.

K. Baer, M. Roosevelt, A. B. Jr, N. Van-clarkson, T. Rooijen et al., Frevert Schnieder Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the, Liver Cell. Microbiol, vol.9, pp.397-412, 2007.

U. Frevert, S. Engelmann, S. Zougbédé, J. Stange, B. Ng et al., Yee Intravital observation of Plasmodium berghei sporozoite infection of the liver, PLoS Biol, vol.3, p.192, 2005.

A. A. Sultan, M. R. Briones, N. Gerwin, M. C. Carroll, and V. , Nussenzweig Sporozoites of Plasmodium yoelii infect mice with targeted deletions in ICAM-1 and ICAM-2 or complement components C3 and C4 Mol, Biochem. Parasitol, vol.88, pp.263-266, 1997.

P. Marshall, A. Rohlmann, V. Nussenzweig, J. Herz, P. Sinnis et al., Plasmodium sporozoites invade cells with targeted deletions in the LDL receptor related protein Mol, Biochem. Parasitol, vol.106, pp.293-298, 2000.

P. Sinnis and M. , Febbraio Plasmodium yoelii sporozoites infect CD36-deficient mice, Exp. Parasitol, vol.100, pp.12-16, 2002.

M. Cunha-rodrigues, S. Portugal, M. Febbraio, and M. M. Mota, Infection by and protective immune responses against Plasmodium berghei ANKA are not affected in macrophage scavenger receptors A deficient mice, BMC Microbiol, issue.6, p.73, 2006.

S. J. Pancake, G. D. Holt, S. Mellouk, and S. L. , Hoffman Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates, J. Cell. Biol, vol.117, pp.1351-1357, 1992.

S. Yalaoui, T. Huby, J. F. Franetich, A. Gego, A. Rametti et al., Froissard Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection Cell Host Microbe, vol.4, pp.283-292, 2008.

C. D. Rodrigues, M. Hannus, M. Prudêncio, C. Martin, L. A. Gonçalves et al., Mota Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection Cell Host Microbe, vol.4, pp.271-282, 2008.

, Version: Postprint (identical content as published paper) This is a self-archived document from i3S -Instituto de Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our publications

L. Foquet, C. C. Hermsen, L. Verhoye, G. J. Van-gemert, R. Cortese et al., Meuleman Anti-CD81 but not anti-SR-BI blocks Plasmodium falciparum liver infection in a humanized mouse model, J. Antimicrob. Chemother, vol.70, pp.1784-1787, 2015.

L. Song, C. Lee, and C. , Schindler Deletion of the murine scavenger receptor CD68, J. Lipid Res, vol.52, pp.1542-1550, 2011.

J. E. Puche, Y. A. Lee, J. Jiao, C. Aloman, M. I. Fiel et al., A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice, Hepatology, vol.57, pp.339-350, 2013.

O. Silvie, E. Rubinstein, J. F. Franetich, M. Prenant, E. Belnoue et al., Mazier Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity, Nat. Med, vol.9, pp.93-96, 2003.

A. Kaushansky, A. N. Douglass, N. Arang, V. Vigdorovich, N. Dambrauskas et al., Kappe Malaria parasites target the hepatocyte receptor EphA2 for successful host infection, Science, vol.350, pp.1089-1092, 2015.