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ABSTRACT 

Hematogenous dissemination followed by tissue tropism is a characteristic of the infectious 

process of many pathogens including those transmitted by blood-feeding vectors. After 

entering into the blood circulation, these pathogens must arrest in the target organ before 

they infect a specific tissue. Here, we describe a non-invasive method to visualize and 

quantify the homing of pathogens to the host tissues. By using in vivo bioluminescence 

imaging we quantify the accumulation of luciferase-expressing parasites in the host organs 

during the first minutes following their intravascular inoculation in mice. Using this technique 

we show that in the malarial infection, once in the blood circulation, most of bioluminescent 

Plasmodium berghei sporozoites, the parasite stage transmitted to the host skin by a 

mosquito bite, rapidly home to the liver where they invade and develop inside hepatocytes. 

This homing is specific to this developmental stage since blood stage parasites do not 

accumulate in the liver, as well as extracellular Trypanosoma brucei bloodstream forms and 

liver-infecting Leishmania infantum amastigotes. Finally, this method can be used to study 

the dynamics of tissue tropism of parasites, dissect the molecular and cellular basis of their 

increased arrest in organs and to evaluate immune interventions designed to block this 

targeted interaction. 

INTRODUCTION 

The use of the host circulatory system to disseminate and infect specific tissues is a recurrent 

characteristic observed in the lifecycle of innumerous viruses, bacteria and parasites. This 

tissue tropism is frequently associated with the mode of transmission of these 

microorganisms, as observed for pathogens that invade salivary glands of arthropod vectors 

and are transmitted into the host skin with the vector saliva during an infectious bite [1], [2]. 

Tissue tropism is also associated with the pathology caused by these microorganisms as 

known, for example, for the hepatitis or encephalitis-causing viruses [3]. In some cases this 

targeted infection can also be asymptomatic as observed for Plasmodium sporozoites, the 

infective malaria parasite stage inoculated in the skin during a mosquito bite. Following 

deposition in the skin tissue, sporozoites invade blood vessels [4], [5] and enter into the blood 

circulation to specifically and transiently infect the liver [6], [7], [8]. 

Since mammals have a closed circulatory system, the use of the blood circulation to reach 

specific tissues requires the arrest of the pathogen in the target organ and the ensuing 

crossing of the endothelial barrier, which physically separates the blood compartment from the 

organ parenchyma. Some organs, such as the liver, spleen and adrenal glands, are directly 

exposed to blood-borne pathogens due to the presence of fenestrated vessels, allowing a 

direct extravasation of small pathogens (e.g., fenestra diameter of hepatic sinusoids:∼100 nm 

[9]), or a local open circulation. Consequently, the arrest of pathogens can be expected to 

occur through their binding to molecules on the surface of either tissue-specific endothelial 

cells or resident immune cells, or to molecules of extravascular cells exposed to the blood 

circulation in the case of fenestrated sinusoids and in the open splenic circulation. 

The dissection of the mechanisms used by pathogens to specifically infect a tissue is 

hampered by the lack of an easy and quantitative method to assess this first step of arrest in 

the host organs following blood dissemination. The localization and quantification of 

pathogens in tissues usually requires the dissection of organs and the measurement of 

pathogen load in the excised samples by PCR, radioactive labeling, subinoculation or in vitro 
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culture. On the other hand, bioluminescence imaging can reveal the distribution of living 

luciferase-expressing cells in a non-invasive and quantitative manner in the whole body of 

small hosts, such as mice. This technique, which is based on an enzymatic reaction that 

generates photons following the oxidation of a substrate, has been frequently applied to study 

Plasmodium behaviour [10] in the blood [11], [12], liver [13], [14], [15] and skin of rodents [8], 

[16]. The firefly luciferase has been preferentially used for in vivo studies when compared to 

the NanoLuc and Gaussia luciferase, which despite emitting more light in vitro, seem to be 

less efficient in vivo[17]. This is in part due to the higher absorption and scatter by the host 

tissues of the blue light emitted by their substrates [18]. Accordingly, increased in vivo 

sensitivity has been successfully achieved by the red-shifted variant of firefly luciferase [19], 

[20]. Here, using bioluminescence imaging we demonstrate the specific homing of firefly 

luciferase-expressing Plasmodium berghei sporozoites to the liver following the first minutes 

of their hematogenous dissemination. 

MATERIAL AND METHODS 

Mice. All experiments were carried out in accordance with the IBMC.INEB Animal Ethics 

Committees and the Portuguese National Authorities for Animal Health guidelines or in 

accordance with the Animal Care and Use Committee of Institut Pasteur both according to the 

statements on the directive 2010/63/EU of the European Parliament and Council. Four to six 

weeks old C57BL/6, Swiss, NMRI or BALB/c mice were purchased from Elevage Janvier or 

Charles River. 

Parasites. Throughout the experiments parasites used include Plasmodium berghei ANKA 

strain clone 676cl1 expressing a GFP-Luciferase fusion gene via the pbef1 α promoter [21], 

Trypanosoma brucei brucei Lister 427 expressing the redshifted luciferase gene (PpyRE9h) 

flanked by 5′VSG/3′tubulin [20], [22], a cloned line of Leishmania infantum 

(MHOM/MA/67/ITMAP-263) expressing luciferase under the control of the intergenic region of 

α-tubulin [23]. 

To obtain P. berghei (Pb) sporozoites, female Anopheles stephensi mosquitoes (SDA 500 

strain) reared in the Center for the Production and Infection of Anopheles at the Pasteur 

Institute were infected 3–4 days after emergence and kept as previously described [24]. 

Sporozoites were collected from salivary glands 21–28 days after the infectious blood meal 

and kept on ice in PBS until inoculated into mice. Merozoites were obtained by culturing 

infected mouse blood in RPMI 1640 (Lonza) supplemented with 20% heat inactivated fetal 

bovine serum (Biowest) and 50 μg/ml neomycin (Sigma) and flushed 90 s at 1.5–2 bar 

pressure with a gas mixture of 5% CO2, 5% O2 and 90% N2 for 16 h at 37 °C and under 

shaking. Mature schizonts were separated using a Nycodenz (Axis Shield) gradient and 

merozoites were isolated by filtration of schizonts through a 1.2 μm filter [25]. 

The bloodstream forms of T. b. brucei (Tb) Lister 427 were grown in HMI-9 medium (Sigma) 

supplemented with 10% heat inactivated fetal bovine serum (Biowest) and 100 IU/ml of 

penicillin/streptomycin (Lonza) at 37 °C, 5% CO2 in a humidified atmosphere [26]. 

L. infantum (Li) axenic amastigotes were cultured at 37 °C, and 5% CO2 in a cell-free medium 

called MAA/20 (medium for axenic amastigotes growth) as described previously [27]. Briefly, 

MAA/20 consisted of modified medium 199 (Invitrogen) with Hank’s Balanced Salt Solution 

supplemented with 0.5% trypto-casein (Oxoid), 15 mM d-glucose (Sigma), 5 mM glutamine 
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(Lonza), 4 mM NaHCO3, 0.023 mM bovine hemin (Fluka) and 25 mM HEPES (Lonza) to a 

final pH of 6.5 and supplemented with 20% heat inactivated fetal bovine serum (Biowest). 

Bioluminescence imaging. Parasite loads of mice infected with luciferase-expressing 

parasites were assessed by bioluminescence imaging using the IVIS Lumina LT system 

(Perkin Elmer). Prior to infection, animals had their ventral fur shaved with an appropriate 

clipper. In all the models, mice were infected following the intravenous injection into the tail 

vein of 100 μl of parasite suspension. 

For the experiments with Pb, C57BL/6 mice were typically infected with either ∼1.5 × 10
5

salivary gland sporozoites or ∼2 to 6 × 10
7
 blood merozoites. Infections with Tb bloodstream

forms or with Li axenic amastigotes were performed in BALB/c mice following the inoculation 

of respectively 1 × 10
6
 or 1 to 2 × 10

8
 parasites. Immediately after parasite inoculation, mice

were anesthetized with 2.5% isoflurane and four minutes after the infection, injected 

subcutaneously with d-luciferin (2.4 mg, Perkin Elmer). Mice were then transferred to the 

stage of an intensified charge-coupled device photon-counting video camera box where 

anaesthesia was maintained with 2.5% isoflurane. After a three minute incubation allowing the 

distribution of the substrate in the body of the anesthetized animals, a five minute signal 

acquisition controlled by the Living Image software (Perkin Elmer) was initiated. At the end of 

this period animals returned to their cage and recovered from the anaesthesia. Measurement 

of infection by bioluminescence one day later was performed as described above. 

The detection of the bioluminescence signals by the system resulted in the generation of 

signal maps automatically superimposed to the grey-scale photograph of the mice. The 

quantifications were performed using the Living Image software (Perkin Elmer). 

Bioluminescent signals on the regions of interest (ROI) encompassing most of the ventral view 

of the animal body, thorax, liver, spleen and lower abdomen were manually defined as 

described below and applied to all animals. The total flux (photons/s) and average radiance 

(photons/s/cm
2
/steradian) within these ROIs was automatically calculated. ROI background

signal was obtained from imaging non-infected mice that received d-luciferin as described 

above. The total flux or the average radiance background signal of the respective ROIs were 

subtracted to the respective total flux or average radiance measured on infected animals. The 

percentage of bioluminescence in the defined ROIs (thorax, liver, spleen and lower abdomen) 

was calculated by dividing the total flux of the respective ROI by the total flux of the ventral 

animal body ROI. 

Statistical analysis. All the statistical analysis and graphical representation of the data were 

performed using GraphPad Prism 6 software. Students t-test or a two-way analysis of 

variance (ANOVA) with Sidak’s multiple comparisons test was performed and statistical 

significance was asserted whenever the value of p was lower than 0.05 by ∗(p < 0.05), 
∗∗(p < 0.01), ∗∗∗(p < 0.001) and ∗∗∗∗(p < 0.0001). 

RESULTS AND DISCUSSION 

In this study we applied 2D bioluminescence imaging to investigate the accumulation of blood-

circulating Pb bioluminescent sporozoites in the liver of living mice during the first minutes 

following their intravascular inoculation, herein defined as homing. The pattern of parasite 

homing was also further compared to the successful establishment of infection as measured 

by the distribution of the parasite bioluminescence signal one day later. 
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To assess the unambiguous accumulation of sporozoites in the liver, we use different firefly 

luciferase-expressing blood-borne parasites with relatively similar sizes and with different 

specificities and capacities of invasion. 

As shown in the Fig. 1A, once in the blood circulation, Pb sporozoites and merozoites invade 

and develop, respectively, inside hepatocytes and erythrocytes [28]; Li amastigotes are known 

to survive and multiply inside phagocytic cells, such as macrophages and dendritic cells of the 

liver, spleen and bone marrow [29], [30], and extracellular replicative Tb bloodstream forms 

live in the blood, lymphatic system and interstitial space of organs [31]. Therefore, the 

parasites used in this study include pathogens that infect the liver (Pb sporozoites and Li 

amastigotes), the spleen (Li amastigotes) and the blood of the host (Pb merozoites and Tb 

bloodstream forms). 

Taking advantage of the Living Image software that can superimpose the bioluminescence 

signal of parasites and the grey-scale photograph of mice, the ventrally exposed body of the 

host, placed in the dorsal position, was equally divided from the nostril to the perineal body in 

four rectangular areas, delineating the head, thorax, upper abdomen and lower abdomen 

(Fig. 1B). Importantly, the middle line of this zone, laying between the thorax and the upper 

abdominal area, coincided with the sternum, and therefore served as a robust fiducial mark. 

The total area of these four rectangular regions of interest (ROIs) was used to determine the 

total bioluminescence signal emitted by the parasites in the ventral view of the animal body 

(ventral ROI). Inside these rectangular ROIs and for quantification purposes, elliptical ROIs 

encompassing organs well known to be infected by some of the parasites listed in the Fig. 1A 

were defined using the Living Image software and used to quantify the relative distribution of 

parasite load by bioluminescence at early (homing) and late (infection) time points. 

In the upper abdomen, the ROI for quantifying parasite load in the liver was defined by 

infecting mice with luciferase-expressing Pb sporozoites. Two days after sporozoite 

inoculation in the host, when parasites reach the maximum of their intracellular development 

inside hepatocytes, we averaged the bioluminescence signal of three infected mice and 

determined the corresponding ROI of the infected liver (Fig. 1B, hepatic infection, left panel). 

As expected, the liver was the only visceral organ to emit photons and the hepatic ROI was 

placed just bellow the sternum matching the model illustrated in the IVIS mouse atlas model 

(Fig. 1B, right panel). The position of the liver using bioluminescence was confirmed using 

luciferase-expressing Li amastigotes. Accordingly, the hepatic ROI obtained using amastigote 

infection corresponded to the bioluminescence signal of sporozoite infection (Fig. 1B, left and 

middle panel). In addition, amastigotes also infected a region adjacent to and distinct from the 

hepatic ROI, which according to its anatomical position and the tissue tropism of amastigotes 

should correspond to the ventral extremity of the spleen (Fig. 1B, splenic infection, middle 

panel). To quantify the relative load of parasites in the thorax, which contains the lungs, 

thymus and heart, and in the lower abdomen, which contains the intestine and bladder among 

other organs, the elliptical area of the hepatic ROI defined using the Pb sporozoite infection 

was transposed to the thorax and lower abdomen rectangular areas, and was defined as 

thoracic and lower abdominal ROIs, respectively (Fig. 1B, right panel). 

The homing and infectivity of the different parasites were determined by measuring the 

intensity of the parasite bioluminescence throughout the anatomical regions defined above 

(thoracic, hepatic, splenic and lower abdominal ROIs) relative to that of the ventral view of the 

animal body (ventral ROI). For that, the total flux (photons/s) of the respective ROI was 

divided by the total flux of the ventral ROI, previously subtracted by the background values 

calculated from non-infected animals. In addition, the parasite development in the tissues was 
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evaluated by comparing the average radiance (photons/s/cm
2
/steradian) of ROIs at early 

(homing) and late (infection) time points. 

Once in the blood circulation, Plasmodium sporozoites are known to transform and multiply 

into merozoites, the red blood cells infective forms, exclusively inside hepatocytes [6], [7], [8]. 

Sporozoites can be detected in the liver a few minutes after intravascular inoculation [16], [32]. 

After two hours, most of injected sporozoites accumulate in the liver [33]. Therefore, prior to 

invading hepatocytes, sporozoites passively transported in the blood must arrest in the liver 

sinusoids. This arrest has been proposed to be due to both a slower blood circulation speed in 

the sinusoids and the interaction of the most abundant sporozoite surface protein, the 

circumsporozoite protein (CSP) with the highly sulphated proteoglycans that protrude through 

the fenestra of endothelial cells [28], [34]. Noteworthy, the current model explaining this crucial 

step is based on indirect experiments interpreting the binding of recombinant proteins to 

hepatocytes or the outcome of a liver infection by sporozoites. When and how sporozoites 

arrest in the liver is still an unsettled issue. 

To evaluate whether Plasmodium sporozoites specifically home to the liver in the first minutes 

following their intravascular inoculation in C57BL6 mice, the distribution and relative intensity 

of the bioluminescence signal emitted by luciferase-expressing sporozoites was calculated in 

the previously defined ROIs and compared to that obtained after injection of luciferase-

expressing blood merozoites. Using this method, ∼70% of the total bioluminescence signal 

detected 7 min after the intravenous injection of sporozoites was found in the liver ROI, 

contrasting with only ∼20% after injection of merozoites (Fig. 2A and B). While sporozoite 

bioluminescence is clearly concentrated in the liver, the bioluminescence of merozoites is 

seen all over the body suggesting parasites are in circulation. Indeed, free merozoites 

recognize, attach, and invade red blood cells and this process occurs rapidly, in the order of 

minutes, as the antigens present on the parasite surface are susceptible to immune attack 

[35]. Inside red blood cells, they develop through the ring, trophozoite, and schizont stages, 

replicating to produce between 16 and 32 daughter merozoites. After egressing from the 

infected cell and invading another red blood cell, these merozoites initiate a new cycle of 

multiplication. This cyclic process is responsible for the clinical manifestations of malaria and 

lasts nearly 24 h in rodents [35]. Therefore, one day after merozoite injection, the 

bioluminescence signal remained distributed all over the animal body while concentrated in 

the liver of mice infected with sporozoites. Indeed, in the latter ∼90% of the total 

bioluminescent signal was detected in the liver versus 20% in mice inoculated with merozoites 

(Fig. 2C and D). Notably, the pattern of parasite distribution in the ROIs, concentrated in the 

liver after sporozoite injection and disseminated through the body after merozoite injection, did 

not change substantially from the homing and infection time points. In the first case, this 

indicates that sporozoites rapidly accumulate in the liver to establish the infection of 

hepatocytes. In the second, this similarity suggests that merozoites and infected red blood 

cells are principally circulating in the vasculature. The exponential multiplication of parasites in 

the liver (Fig. 2E) or in the blood (Fig. 2F) was assessed by quantifying the average radiance 

of the bioluminescence signal respectively, in the hepatic and ventral ROIs. 

In the range of 75,000–300,000 injected sporozoites, a linear relationship is observed 

between the number of injected parasites and the average bioluminescence quantified in the 

hepatic ROI in the first minutes post-inoculation (Fig. 2G, R
2
 = 0.99). Therefore, this method 

can be used to quantify not only changes in the parasite relative distribution (homing pattern) 

but also in the sporozoite load, early during the hepatic infection. 
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To confirm the specificity of sporozoite homing to the liver, another blood circulating 

bioluminescent parasite, the extracellular replicative monomorphic Tb was intravenously 

injected into BALB/c mice. The relative distribution of the bioluminescence signal of Tb 

bloodstream forms was quantified using the pre-defined ROIs (Fig. 3) and compared to that 

obtained using Plasmodium parasites (Fig. 2). Immediately after intravascular inoculation, the 

bioluminescence signal was detected all over the body as observed following Pb merozoite 

injection. Similar percentages of bioluminescence in the hepatic (∼20%) and in the other ROIs 

strongly indicate that both Pb merozoites and Tb bloodstream forms are circulating with the 

same pattern in the blood, presumably without any detectable specific arrest in the organs 

(Fig. 3A and B). Consequently, the values obtained in the ROIs should correspond 

approximately to the percentual blood volume of these regions. Indeed, the value of 20% of 

total bioluminescence in the liver is in the range (14–30%) of the total blood percentage found 

in the liver [36], [37]. The distribution of Tb bloodstream forms in the ROIs did not also change 

substantially at the homing and infection time points, except for the splenic ROI. Owing to 

parasite multiplication the average radiance in the thorax, liver and lower abdomen increased 

∼15-fold from the first minutes after infection to day 1, contrasting with the 90-fold observed in 

the splenic ROI (Fig. 3C). 

To determine if the capacity to infect the liver is associated with the homing of parasites to 

this organ as seen for sporozoites, we assess the distribution pattern of bioluminescent Li 

amastigotes known to infect macrophages including those of the liver, as depicted in the 

Fig. 1B. Shortly after intravenous injection of amastigotes into BALB/c mice, 

bioluminescence is mostly observed in the thorax, presumably in the right and left lungs 

given the anatomical position and shape of the signal, as well as, in the spleen and in the 

liver (Fig. 4A). The spleen and the liver are known to harbour resident macrophages, which 

can contact the blood and clear particulate material from the circulation [38]. Interestingly, 

the bioluminescence signal of amastigotes in the liver, ∼20% of the total signal, did not 

statistically differ from the percentage observed using injection of blood-circulating Tb 

bloodstream forms and Pb merozoites (Fig. 5A), in clear contrast with the 70% of Pb 

sporozoites that accumulated in the liver. These results show that despite infecting the liver, 

Li amastigotes do not significantly accumulate in this organ shortly after intravascular 

inoculation. On the other hand, the accumulation of amastigotes in the spleen was 

significantly higher than those of Pb merozoites and Tb bloodstream forms, indicating a 

preference of Li amastigotes to accumulate in this organ. Regarding the distribution of 

amastigotes in the thoracic region, despite the distinctive pulmonary pattern, the percentage 

of bioluminescence was not statistically different from Tb injection but differed from Pb 

merozoites, complicating the interpretation of the data (Fig. 5A). Importantly, the percentage 

of the total bioluminescence detected in the thorax decreased from ∼40 to 5% when 

comparing the first minutes after Li amastigotes inoculation to day 1 (Fig. 4B), while it 

increased in the liver and spleen from ∼20 to >40% and from ∼20 to 35%, respectively (Fig. 

5). Analysis of the average radiance shows a significant reduction in the signal detected in 

the thorax at day 1 comparing to 7 min post-inoculation indicating that the parasites initially 

observed in the thorax were cleared in the lungs in the case of a possible arrest in this 

region or they were simply removed from the circulation by phagocytes of the liver, spleen, 

bone marrow or blood (Fig. 4C). 

The liver can rapidly clear microorganisms from the blood circulation [39] through the 

scavenging activity of Kupffer [40], [41] and endothelial cells [42]. This clearance can be 

extremely fast, mediated by the direct recognition of pathogens [41], or relatively slower, 

mediated by the recognition of host molecules bound to the opsonized pathogens [43]. 

However, some pathogens, such as Li amastigotes, can survive to this clearing activity and 
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exploit this scavenging function to arrest and specifically infect the liver. Plasmodium 

sporozoites are known to be captured by KCs in the lumen of liver sinusoids [44], 

presumably by the interaction of CD68 with the parasite GAPDH [45], [46]. After a transitory 

interaction with KCs, most sporozoites escape from a phagocytic death by traversing these 

cells and either return to the blood circulation or invade the hepatic parenchyma [44]. 

However, KCs do not seem to be directly involved in the homing of sporozoites to the liver, 

since their depletion by liposome-encapsulated clodronate, rather increases the hepatic 

infection [47], [48]. In vivo imaging indeed indicates that sporozoites bind to endothelial cells 

prior to the crossing of the sinusoidal barrier after interacting, or not, with KCs [44], [49]. The 

lack of the intercellular adhesion molecule (ICAM) 1 and 2, complement factors C3 and C4 

[50], LDL receptor related protein [51], CD36 [52] or macrophage scavenger receptors (SR) 

AI and AII [53] does not change sporozoite infectivity in mice, indicating that these molecules 

are also unlike to play a role in the sporozoite homing. On the other hand, the sulfated 

polysaccharides, dextran sulfate and fucoidan, can inhibit sporozoite infectivity in vivo[54], 

while the role of SR-BI still remains controversial [55], [56], [57]. In all these cases, 

sporozoite infectivity is assessed by the measurement of parasite load in the liver two days 

post-infection, rendering impossible the discrimination of an effect of these molecules on 

sporozoite homing from an inhibitory effect on the invasion and/or development inside 

hepatocytes. This novel homing method can therefore be used to reassess the impact of 

these molecules and cells in the specific arrest of sporozoites in the liver. For example, 

combining this method with the use of mice lacking CD68 [58], stellate cells [59] or KCs [48], 

[49], or alternatively, with the targeting of putative arrest/invasion receptors, such as CD81 

[60], SR-BI [55], [56], [57] and EphA2 [61], will allow the elucidation of the role played by 

these factors in the sporozoite homing. Complementary to this approach, mutant sporozoites 

lacking adhesion molecules or neutralizing antibodies can be used to determine the impact 

of parasite proteins on the specific accumulation of sporozoites in the liver. Finally, this 

method can be adapted for the quantification of the homing of bioluminescent human-

infecting sporozoites to the liver of humanized mice harboring human hepatocytes [15], [57]. 

CONCLUSION 

A complete picture of increased arrest and subsequent development of parasites in organs, 

defined here respectively, as homing and infection is shown in the Fig. 5. The increased arrest 

leading to parasite accumulation in organs was defined by statistical comparison with the 

distribution of blood-circulating parasites, Pb merozoites and Tb bloodstream forms. Based on 

this parameter, we conclude that Pb sporozoites specifically home to the liver in contrast to Pb 

merozoites, Tb bloodstream forms and even liver-infecting Li amastigotes. Interestingly, using 

this methodology, we observe the splenic and hepatic infection of amastigotes, but only the 

parasite accumulation in the spleen statistically differs from the distribution of both blood-

circulating control parasites. These results allow us to clearly discriminate at an early time 

point of analysis the increased arrest (homing step) from the regular arrest of parasite in 

organs, both leading to a specific tissue infection (tissue tropism). 

The combination of this non-invasive and quantitative imaging method with genetically 

modified pathogens and transgenic mouse strains lacking surface molecules on putative 

target cells will be key to dissect the molecular mechanisms involved in the homing of 

microorganisms to tissues following hematogenous dissemination. Finally the use of hosts 

immunized against pathogen molecules involved in this arrest step certainly will assist in the 

design of better strategies to prevent infection. 
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TABLES & FIGURES 

Figure 1. Defining pathogens and regions of interest in the host. (A) Schematic representation of parasite species 
and stages used in this work to evaluate by ventral body in vivo bioluminescence imaging the parasite homing and 
infectivity to the host organs. (B) Defining the Regions of Interest (ROIs) used for quantitative analysis. The ventral 
view of the animal body was divided into four main rectangular regions to delineate the head, thorax, upper abdomen 
and lower abdomen. Inside these regions and for quantification purposes elliptical ROIs were drawn with Living 
Image software. The liver and spleen ROIs in the upper abdomen were defined based on the bioluminescence signal 
of mice infected with P. berghei sporozoites (day 2; left) and L. infantum amastigotes (day 2; middle). The schematic 
mice model (right) was obtained from the IVIS digital atlas. 
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Figure 2. P. berghei salivary gland sporozoites home to the liver immediately after intravascular inoculation. C57BL/6 
mice were injected intravenously with luciferase expressing salivary gland sporozoites (PbSPZ) or blood merozoites 
(PbMZ), and the distribution of parasites was evaluated by bioluminescence imaging at 7 min (A-B) and day 1 (C-D). 
(B;D) The percentage of the bioluminescence signal in the thorax, liver, spleen and lower-abdomen was calculated 
dividing the total flux (photons/s) of the respective ROIs by that of the ventral ROI previously subtracted by the 
background values calculated from non-infected mice. The graphs show the mean + standard deviation (n = 3) and 
are representative of at least 2 independent experiments. Statistical significance between sporozoites and 
merozoites was determined using 2-way ANOVA with Sidak‘s multiple comparisons test. (E) Quantification at 7 min 
and day 1 of liver infection in average radiance (photons/s/cm

2
/steradian) following sporozoite injection. (F) 

Quantification at 7 min and day 1 of whole body infection in average radiance (photons/s/cm
2
/steradian) following 

merozoite injection. (E-F) Statistical significance calculated by Students t-test. 
**
p < 0.01; 

***
p < 0.001; 

****
p < 0.0001. 

(G) Quantification of the liver average radiance (photons/s/cm
2
/steradian) at 7 min following intravenous injection of 

different numbers of sporozoites. The graph shows the linear regression of the bioluminescent signal with the 95% 
confidence bands (R

2
 = 0.99) Symbols represent mean ± standard deviation (n = 3). 
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Figure 3. Relative distribution and replication of T. b. brucei bloodstream forms. (A-C) BALB/c mice were injected 
intravenously with red-shifted luciferase expressing Tb bloodstream forms and the distribution of parasites evaluated 
by bioluminescence imaging at 7 min and day 1. (B) The percentage of the bioluminescence signal in the thorax, 
liver, spleen and lower-abdomen was calculated dividing the total flux (photons/s) of the respective ROIs by that of 
the ventral ROI previously subtracted by the background values calculated from non-infected mice. (C) Quantification 
of the bioluminescence signal in average radiance (photons/s/cm

2
/steradian) in the thorax, liver, spleen and lower 

abdomen. (B-C) The graphs show the mean + standard deviation (n = 4) and are representative of 2 independent 
experiments. Statistical significance between 7 min and day 1 for the several regions of interest was determined 
using 2-way ANOVA with Sidak‘s multiple comparisons test. 

*
p < 0.05; 

**
p < 0.01. 
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Figure 4. Homing and infection of L. infantum amastigotes. (A-C) BALB/c mice were injected intravenously with 
luciferase expressing axenic Li amastigotes and the distribution of parasites evaluated by bioluminescence imaging 
at 7 min and at day 1. (B) The percentage of the bioluminescence signal in the thorax, liver, spleen and lower-
abdomen was calculated dividing the total flux (photons/s) of the respective ROIs by that of the ventral ROI 
previously subtracted by the background values calculated from non-infected mice. (C) Quantification of the 
bioluminescence signal in average radiance (photons/s/cm

2
/steradian) in the thorax, liver, spleen and lower 

abdomen. (B-C) The graphs show the mean + standard deviation (n = 3) and are representative of 2 independent 
experiments. Statistical significance between 7 min and day 1 for the several regions of interest was determined 
using 2-way ANOVA with Sidak‘s multiple comparisons test. 

*
p < 0.05; 

**
p < 0.01; 

****
p < 0.0001. 
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Figure 5. Summary of homing and infection of parasites. Comparative analysis of the distribution of the 
bioluminescence signal (%) in the first minutes (A) and at day 1 (B) following intravenous injection of P. berghei 
sporozoites (SPZ) or merozoites (MZ), T. b. brucei bloodstream forms (BSF) or L. infantum amastigotes (AMA). (A-B) 
The graphs show the mean + standard deviation (n = 3–4) and are representative of at least 2 independent 
experiments. Statistical significance between the different parasite stages was evaluated using 2-way ANOVA with 
Sidak‘s multiple comparisons test. 

*
p < 0.05; 

**
p < 0.01; 

***
p < 0.001; 

****
p < 0.0001. 
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