P. Aaby, A. Rodrigues, P. E. Kofoed, C. S. Benn, and . Rts, S/AS01 malaria vaccine and child mortality, Lancet, vol.386, pp.1735-1736, 2015.

B. Greenwood and O. K. Doumbo, Implementation of the malaria candidate vaccine RTS,S/AS01, Lancet, vol.387, pp.318-319, 2016.

B. Blasco, D. Leroy, and D. A. Fidock, Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic, Nat. Med, vol.23, pp.917-928, 2017.

E. M. Riley and V. A. Stewart, Immune mechanisms in malaria: new insights in vaccine development, Nat. Med, vol.19, pp.168-178, 2013.

G. Triller, Natural parasite exposure induces protective human anti-malarial antibodies, Immunity, vol.47, pp.1197-1209, 2017.

S. Cohen, G. I. Mc, and S. Carrington, Gamma-globulin and acquired immunity to human malaria, Nature, vol.192, pp.733-737, 1961.

A. S. Ishizuka, Protection against malaria at 1 year and immune correlates following PfSPZ vaccination, Nat. Med, vol.22, pp.614-623, 2016.

C. F. Ockenhouse, Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria, J. Infect. Dis, vol.177, pp.1664-1673, 1998.

J. A. Stoute, Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine, J. Infect. Dis, vol.178, pp.1139-1144, 1998.

I. Chuang, DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity, PLoS ONE, vol.8, p.55571, 2013.

M. T. White, The relationship between RTS,S vaccine-induced antibodies, CD4(+) T cell responses and protection against Plasmodium falciparum infection, PLoS ONE, vol.8, p.61395, 2013.

A. J. Radtke, Lymph-node resident CD8alpha + dendritic cells capture antigens from migratory malaria sporozoites and induce CD8 + T cell responses, PLoS Pathog, vol.11, p.1004637, 2015.

C. F. Ockenhouse, CS.01-RTS,S/AS01 heterologous prime boost vaccine efficacy against sporozoite challenge in healthy malaria-naive adults, PLoS ONE, vol.10, p.131571, 2015.

S. J. Dunachie, A clinical trial of prime-boost immunisation with the candidate malaria vaccines RTS,S/AS02A and MVA-CS, Vaccine, vol.24, pp.2850-2859, 2006.

C. Lorin, A single injection of recombinant measles virus vaccines expressing human immunodeficiency virus (HIV) type 1 clade B envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV, J. Virol, vol.78, pp.146-157, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02129907

M. Guerbois, Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DeltaV1V2 is strongly immunogenic, Virology, vol.388, pp.191-203, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00384184

S. Brandler, Pediatric measles vaccine expressing a dengue antigen induces durable serotype-specific neutralizing antibodies to dengue virus, PLoS Negl. Trop. Dis, vol.1, p.96, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00285763

M. Liniger, Recombinant measles viruses expressing single or multiple antigens of human immunodeficiency virus (HIV-1) induce cellular and humoral immune responses, Vaccine, vol.27, pp.3299-3305, 2009.

R. Stebbings, Immunogenicity of a recombinant measles-HIV-1 clade B candidate vaccine, PLoS ONE, vol.7, p.50397, 2012.

K. Ramsauer, Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebocontrolled, active-comparator, first-in-man trial, Lancet Infect. Dis, vol.15, pp.519-527, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452896

E. C. Reisinger, Immunogenicity, safety, and tolerability of the measlesvectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial, Lancet, vol.392, pp.2718-2727, 2018.

C. Combredet, A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice, J. Virol, vol.77, pp.11546-11554, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02129918

R. I. Jaffe, G. H. Lowell, and D. M. Gordon, Differences in susceptibility among mouse strains to infection with Plasmodium berghei (ANKA clone) sporozoites and its relationship to protection by gamma-irradiated sporozoites, Am. J. Trop. Med. Hyg, vol.42, pp.309-313, 1990.

J. C. Hafalla, Identification of targets of CD8(+) T cell responses to malaria liver stages by genome-wide epitope profiling, PLoS Pathog, vol.9, p.1003303, 2013.

M. J. Gardner, Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, vol.419, pp.498-511, 2002.

R. A. Wirtz, Plasmodium falciparum: immunogenicity of circumsporozoite protein constructs produced in Escherichia coli, Exp. Parasitol, vol.63, pp.166-172, 1987.

T. D. Rutgers, B surface antigen as carrier matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum, Nat. Biotechnol, vol.6, pp.1065-1070, 1988.

P. Mettens, Improved T cell responses to Plasmodium falciparum circumsporozoite protein in mice and monkeys induced by a novel formulation of RTS,S vaccine antigen, Vaccine, vol.26, pp.1072-1082, 2008.

H. Waldmann, Manipulation of T cell responses with monoclonal antibodies, Annu. Rev. Immunol, vol.7, pp.407-444, 1989.

C. C. John, Correlation of high levels of antibodies to multiple preerythrocytic Plasmodium falciparum antigens and protection from infection, Am. J. Trop. Med. Hyg, vol.73, pp.222-228, 2005.

M. N. Wykes, Why haven't we made an efficacious vaccine for malaria?, EMBO Rep, vol.14, p.661, 2013.

X. Q. Liu, Malaria infection alters the expression of B-cell activating factor resulting in diminished memory antibody responses and survival, Eur. J. Immunol, vol.42, pp.3291-3301, 2012.

M. N. Wykes and M. F. Good, What really happens to dendritic cells during malaria?, Nat. Rev. Microbiol, vol.6, pp.864-870, 2008.

P. Romero, Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria, Nature, vol.341, pp.323-326, 1989.

J. Palomo, Type I interferons contribute to experimental cerebral malaria development in response to sporozoite or blood-stage Plasmodium berghei ANKA, Eur. J. Immunol, vol.43, pp.2683-2695, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00944122

N. K. Kisalu, A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite, Nat. Med, vol.24, pp.408-416, 2018.

S. Chaudhury, The biological function of antibodies induced by the RTS,S/ AS01 malaria vaccine candidate is determined by their fine specificity, Malar. J, vol.15, p.301, 2016.

X. Li, Human CD8 + T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice, Vaccine, vol.34, pp.4501-4506, 2016.

W. R. Weiss, M. Sedegah, R. L. Beaudoin, L. H. Miller, and M. F. Good, CD8 + T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites, Proc. Natl Acad. Sci. USA, vol.85, pp.573-576, 1988.

F. Radecke, Rescue of measles viruses from cloned DNA, EMBO J, vol.14, pp.5773-5784, 1995.

C. L. Parks, R. A. Lerch, P. Walpita, M. S. Sidhu, and S. A. Udem, Enhanced measles virus cDNA rescue and gene expression after heat shock, J. Virol, vol.73, pp.3560-3566, 1999.

T. Ishino, Y. Orito, Y. Chinzei, and M. Yuda, A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell, Mol. Microbiol, vol.59, pp.1175-1184, 2006.

C. Demarta-gatsi, Protection against malaria in mice is induced by blood stage-arresting histamine-releasing factor (HRF)-deficient parasites, J. Exp. Med, vol.213, pp.1419-1428, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01431690

C. Persson, Cutting edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein, J. Immunol, vol.169, pp.6681-6685, 2002.

C. Spaerman, The method of "Right and Wrong Cases" (constant stimuli) without Gauss's formula, Br. J. Psychol, vol.2, pp.227-242, 1908.