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ABSTRACT 
 
Objective Helicobacter pylori (Hp) is a major risk factor for gastric cancer. Hp promotes DNA 

damage and proteasomal degradation of p53, the guardian of genome stability. Hp reduces the 

expression of the transcription factor USF1 shown to stabilize p53 in response to genotoxic 

stress. We investigated whether Hp-mediated USF1 deregulation impacts p53-response and 

consequently genetic instability. We also explored in vivo the role of USF1 in gastric 

carcinogenesis. 

Design Human gastric epithelial cell lines were infected with Hp7.13, exposed or not to a DNA-

damaging agent Camptothecin (CPT), to mimic a genetic instability context. We quantified the 

expression of USF1, p53 and their target genes, we determined their sub-cellular localization 

by immunofluorescence and examined USF1/p53 interaction. Usf1-/- and INS-GAS mice were 

used to strengthen the findings in vivo and patient data examined for clinical relevance. 

Results In vivo we revealed the dominant role of USF1 in protecting gastric cells against Hp-

induced carcinogenesis and its impact on p53 levels. In vitro, Hp delocalizes USF1 into foci 

close to cell membranes. Hp prevents USF1/p53 nuclear built up and relocates these complexes 

in the cytoplasm, thereby impairing their transcriptional function. Hp also inhibits CPT-induced 

USF1/p53 nuclear complexes, exacerbating CPT-dependent DNA damaging effects. 

Conclusion Our data reveal that the depletion of USF1 and its de-localization in the vicinity of 

cell membranes are essential events associated to the genotoxic activity of Hp infection, thus 

promoting gastric carcinogenesis. These findings are also of clinical relevance, supporting 

USF1 expression as a potential marker of gastric cancer susceptibility. 

 

Key words: Helicobacter pylori Pathogenesis; Genetic Instability; DNA damage; Oncogenes, 

Gastric Cancer  
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Summary box 
 
 
What is already known on this subject? 
 
• H. pylori is a major risk factor for gastric cancer 
 
• H. pylori promotes p53 proteasomal degradation and inhibits USF1 expression 
 
• In response to DNA damaging agents, USF1 binds to p53 and inhibits its degradation 
 
What are the new findings? 
 
• Low USF1 and p53 levels are associated with low overall survival in human gastric cancer 
patients 
 
• Loss of USF1 accelerates gastric carcinogenesis 
 
• Only H. pylori and not genotoxic chemicals, leads to USF1 accumulation as structure-like 
foci at the periphery of the cells.  
 
• H. pylori inhibits USF1/p53 nuclear interaction and impairs DNA repair function 
 
How might it impact on clinical practice in the foreseeable future? 
 
• Depletion of USF1 in gastric tumoral tissue can be an indicator of a poor prognosis and 
may become a new biomarker to identify sub-group of patients with higher risk of gastric cancer 
 
• Identification of drugs able to inhibit cytoplasmic accumulation of USF1 or its nuclear 
depletion can allow future development of targeted therapies to improve gastric cancer 
treatment 
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INTRODUCTION  

Helicobacter pylori (Hp) is responsible for about 90% of gastric cancer [GC] cases 

worldwide1 2,3, which represents the highest frequency of infectious agents-associated cancer 

(5.5%)4. Importantly, the detection of preneoplasia5 and Hp eradication during early stages of 

the precancerous cascade can prevent GC development6,7. GC is an inflammation-driven 

disease resulting from the complex interplay between bacterial, host and environmental 

factors8. Hp-induced chronic inflammation contributes to neoplastic transformation, via 

dysregulation of signaling pathways, cell proliferation and genetic instability9. We previously 

reported that Hp induces mutations in chronically-infected mice10,11,12. Hp also causes DNA 

double strand breaks (DSB)13,14 and impairs DNA repair pathways, favoring overall mutation 

load12,15,16. Importantly, Hp promotes the accumulation of mutations in the tumor suppressor 

gene TP5317, which have been reported in 50% of gastric tumors17,18. In response to genotoxic 

stress, p53 activates signaling pathways leading to temporary cell cycle arrest allowing DNA 

damage and cellular repair19. Its inactivation promotes genome instability, a hallmark of 

cancer20. The inhibition of p53 has thus emerged as a strategy of bacterial pathogens to 

modulate host cellular functions21, as for Hp which promotes p53 proteasomal 

degradation22,23,24. Together, this results in accumulation of oncogenic changes in infected cells. 

Finally, Hp induces aberrant DNA methylation that down-deregulates the expression of 

genes related to signal transduction pathways and tumor suppression25,26,27. We reported that 

Hp induces DNA hypermethylation in the promoter region of the upstream stimulating 

transcription factors genes, USF1 and USF2, inhibiting their expression in infected mice 

concomitantly to the development of gastric preneoplasia28. USF1 and USF2 are b-HLH-LZ 

transcription factors ubiquitously expressed. They regulate stress and immune responses, cell 

cycle control, inflammation and genome stability related genes29. They may thus act as tumor 

suppressors30,31. We previously showed that under ultra-violet (UV) stress, USF1 up-regulates 



	 	 5	

CSA and HR23A genes expression, two actors of the transcription-coupled and global genome 

nucleotide excision repair pathway (TC-NER and GG-NER), respectively32. USF1 also binds 

p53 in response to UV-induced DNA damage, preventing the E3-ubiquitin ligase HDM2-p53 

interaction. This results in p53 stabilization and transient cell cycle arrest33. How USF1 

modulates p53 levels in response to Hp and the consequences on the infection-associated 

genotoxicity have never been addressed. 

In the present study, we investigate the role of both USF1 and p53 transcription factors in 

gastric carcinogenesis and asked whether USF1 deregulation during Hp infection could impact 

the p53-response and increase genetic instabilities. Using a mouse model, we showed that the 

absence of USF1 has strong implications in the oncogenic properties of Hp, triggering the 

severity of gastric lesions. In line with these data, low expression levels of both USF1 and TP53 

and consequently deregulation of their target genes, are observed in a significant number of GC 

patients, associated with a worse prognosis. Our findings show that USF1 is a key player in the 

complex regulatory network linking Hp infection to gastric carcinogenesis and pave the way to 

a better understanding of the mechanisms at the origin of pathogen-induced cancer. 

 
RESULTS  
 
Low USF1 and p53 levels are associated with a worse prognosis in GC patients 

Using The Cancer Genome Atlas (TCGA) data sets, GC patients [STAD] are distinguished 

according to their overall survival (top 25% low versus top 25% high, n=188), based on SLC7A2 

expression, the most discriminant gene (figure S1A). As observed in the expression heatmap 

(figure 1A), USF1 and TP53 gene expression levels are correlated with the GC patients overall 

survival. Low mRNA levels of both USF1 and TP53 are associated with poor 3-year survival 

(figures 1B and S1B).  Moreover, for every patient, the mRNA expression levels of USF1 and 

p53 are correlated (figure S1C) and consequently impact their transcriptional function leading 

to a significant down-regulation of pathways, notably p53-signaling, DNA repair (BER, NER) 
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and cell cycle regulation, in patients with low vs high survival (figure S1D). In order to identify 

the p53 and USF1-target genes significantly enriched in the two groups (low vs high survival), 

we performed Gene Set Enrichment Analysis 

(http://software.broadinstitute.org/cancer/software/gsea) in GC, TCGA dataset [STAD] (figure 

S1E-F). The median expression of the top-genes enriched in the low and high survival groups 

(figure S2), showed a specific survival rate-dependent expression on both USF1- and p53-target 

genes (figure 1C). Interestingly, the analysis of another data set from Hippo and coll34 

(GSE2685), confirmed the decrease of most of USF1 and p53-regulated genes expression in 

GC patients, in tumoral vs normal tissues (figure 1D). In parallel, we analyzed USF1 gene 

expression in gastric biopsies from GC patients. In 50% of these patients, USF1 expression was 

lower in the tumoral vs adjacent non-tumoral tissue (fold-change <1; 17/34 patients; P<0.0001) 

(figure 1E), and 88% (15/17) of patients with low USF1 expression were Hp-positive (figure 

S1G). These data suggest that Hp-associated decrease of USF1 gene expression may define a 

sub-group of more aggressive gastric tumors. The consequences of Hp infection on both USF1 

and p53 target-genes expression were also analysed in gastric cells using expression data from 

Koeppel and coll16 (GSE55699) and Hong and coll (E-GEOD-74577). A significant decrease 

of USF1 and TP53 mRNA levels and target genes, mainly correlated with low survival was 

observed (figure 1F). These features are also confirmed in Hp-infected mice using both 

expression data from Galamb and coll35 (GSE5081) (figure S3A) and our previous study36 (E-

MEXP-1135) (figure S3B). 

 

The absence of USF1 exacerbates the severity of Hp-induced gastric lesions 

To determine the consequences of the absence of USF1 in Hp-associated gastric 

pathogenesis, we infected Usf1-KO mice (Usf1-/-)37 and the parental mice (Usf1+/+) with HpSS1 

strain which colonizes the mouse stomach38. At each time-point (9/12 months), the infection 
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status was monitored (figure S3C) and histological analysis performed (figure 2A-B). Nine-

months post-infection (pi), both Usf1-/- and Usf1+/+ mice developed gastric lesions, consisting 

in infiltration of inflammatory cells, mainly mononucleated cells, in the mucosa and sub-

mucosa (figure 2A). A semi-quantitative analysis showed an exacerbation of metaplasia and 

dysplasia in Usf1-/- mice compared to Usf1+/+ (figure 2B). After 9 months, only Hp-infected 

Usf1-/- mice showed metaplasia and dysplasia that were absent in Usf1+/+ infected mice. An 

important loss of parietal cells favoring hypochlorhydria and atypia was also observed in Usf1-

/- infected mice. In Hp-infected Usf1+/+ mice, these atypia and dysplasia appeared only after 12 

months. At 12 months pi, the gastric inflammation was significantly more severe in Hp-infected 

Usf1-/- mice, with score-grading of 2.5 for intestinal metaplasia and parietal cell loss, compared 

to 1 in Usf1+/+ mice. In addition, immunofluorescence (IF) analysis of gastric tissue sections 

shows that in the absence of USF1 (Usf1-/- mice), Hp infection strongly promotes p53 loss 

(figure 2C). This leads to a down regulation of its target genes (GADD45, CDKN1A, PCNA, 

RAB31) (Figure S3D), in agreement with previous mice data35,36 (figure S3A-B). Together, 

these results underscored for the first time a role for USF1 in gastric carcinogenesis. 

 

Hp impairs DNA repair functions by downregulating USF1 and p53 

Since USF1 and p53 cooperate to maintain genetic stability, we investigated whether Hp 

impacts USF1/p53 functioning. We first showed that at 2 and 24h after infection of  MKN45 

gastric epithelial cells, the expression of USF1 and TP53 genes was significantly diminished 

by the oncogenic strain Hp7.1339 (figure 3A, C, E), with a significant and concomitant decrease 

of their protein levels at 24h pi (figure 3B, 3D). This resulted in the diminution of the expression 

of USF1 and p53 DNA repair target genes: respectively CSA, HR23A and GADD45A (figure 

3F). Similar results were obtained with cells treated with Hp7.13 total extracts (50 and 100 

µg/ml), (figure S4A-E), concomitantly with an increase in DNA damage hallmark 
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(phosphorylated-histone H2AX, gH2AX) (figure S4F). The infection of MKN45 cells with 

HpSS1 also, inhibited USF1 and p53 levels (figure S5). These data, suggest that Hp-mediated 

decrease of USF1 and p53 impacts the DNA repair ability of infected cells and consequently 

affect their genetic stability. 

 

Hp leads to USF1 foci accumulation in the cytoplasm and membrane-surrounding regions 

of gastric cells 

Hp has previously been reported to promote the cytoplasmic p53 proteasomal 

degradation22,23. USF1 was shown to interact with p53 leading to p53 nuclear stabilization in 

response to genotoxic stress33. Using immunofluorescence (IF), we observed that, at 2h pi, p53 

nuclear staining was significantly lower in Hp-infected cells than in non-infected, as also USF1 

nuclear staining (figure 4A-B). More importantly, we detected cytoplasmic USF1 foci-like 

structures, mainly in the membrane-surrounding area of Hp-infected cells at 2 and 24h (figure 

4A and C; yellow arrows). Quantification of these foci revealed a marked increase with 

infection time (figure 4C), being present in 80% of Hp-infected cells at 24h pi. Importantly, a 

cytoplasmic accumulation of USF1 was also observed in Hp-infected INS-GAS mice after 6/12 

months in the presence of gastric intraepithelial neoplasia (figure S6A-B), with a p53 decrease 

as reported at 12 months pi (figure S6C). Together these results indicate that Hp relocates USF1 

outside of the nucleus, and promotes USF1 cytoplasmic/membrane accumulation, 

concomitantly to p53 degradation. 

To strengthen this point, we used the well-known DNA-damaging compound, camptothecin 

(CPT), amplifying the USF1 and p53 genotoxic stress response, as previously reported33. 

Briefly, cells were exposed to CPT (50nM) and infected by Hp or not for 2 and 24h. As 

anticipated, CPT alone induced an immediate DNA-damage response, showed by gH2AX 

staining (figure S7), promoting a strong p53 nuclear accumulation 24h post CPT-treatment 
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(figure 5A). This p53 increase was significantly reduced in infected cells, as shown by IF 

quantification (figure 5B). In parallel, while the impact on USF1 expression was mild (figure 

5A-B), an important cytoplasmic/membrane accumulation of USF1 foci was observed in CPT-

treated cells only in the presence of Hp, as confirmed by spots quantification (figure 5A, C). 

Comparable results were obtained when Hp-infection was combined with different genotoxic 

stress compounds (MMS, H2O2) (figures S8-S9). Together this strongly supports the important 

and specific role of Hp on USF1 and p53 biological function. 

 

Hp impairs the formation of USF1/p53 complexes 

To investigate the mechanism by which Hp impairs USF1 and p53 function, we followed 

the formation of USF1/p53 complexes in response to CPT-induced genotoxic stress and 

infection using proximity ligation assay (PLA)40. According to its genotoxic activity, CPT alone 

induces nuclear USF1/p53 complexes, with a marked increase after 24h. In CPT-treated/Hp-

infected cells, the formation of these complexes is abrogated. Thus, CPT exacerbated Hp-

mediated effects with a stronger inhibition of the formation of USF1/p53 complexes, compared 

to Hp infection alone (figure 6A-B). Together, this shows that minute nuclear amounts of USF1 

in infected cells are associated with the absence of USF1/p53 nuclear complexes, impairing p53 

stabilization in agreement with its Hp-mediated degradation22,23. 

 

Hp infection sensitizes gastric cells to genotoxic stress 

We next investigated whether Hp infection could sensitize cells to DNA-damage. To address 

this important clinical question, cells were first infected with Hp7.13 for 24h, washed several 

times prior to their treatment with CPT (50nM) for 24h (figure 7A). Here also, Hp-infected 

cells displayed accumulation of USF1 foci mainly at their periphery with low p53 staining, 

while CPT-treatment alone, promotes USF1 and p53 nuclear increase (figure 7B). Sensitizing 
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cells with Hp 24h prior to CPT-treatment still leads to an important accumulation of USF1 foci 

in the cytoplasm and surrounding-membrane cell area (figure 7B). Importantly, we noticed the 

presence of p53-positive micronuclei-like structures (figure 7B, yellow arrows), a signature of 

elevated genotoxic stress41 known to accumulate p5342, as under our conditions. Same results 

were observed with MMS and H2O2-treated cells (1mM) (figure S10). Thus, Hp-induced USF1 

cytoplasmic/peripheral accumulation is maintained post-infection, rendering the cells more 

susceptible to DNA-damaging agents. 

 

DISCUSSION  

The impairment of p53 function plays a key role in the promotion of carcinogenesis. 

We previously showed that UV-induced p53 stabilization and subsequent transient cell-cycle 

arrest requires USF133. Up to now, no direct in vivo evidence linking USF1 to cancer was 

provided, although molecular data were in favor of such a role30,43, 44. Studies associated USF1 

polymorphisms with increased risk of cancer45,46,47. Here we demonstrate for the first time that 

loss of USF1 promotes Hp-induced carcinogenesis. First, the in vivo absence of USF1 in Usf1-

/- mice, leads to p53 depletion and accelerates the development and triggers the severity of Hp-

induced gastric lesions. More importantly, these mice recapitulate the sequential gastric pre-

neoplastic cascade described in human pathology3. Usf1-/- mice constitute thus an interesting 

model to study Hp-induced gastric carcinogenesis. Second, in human GC samples, USF1 and 

TP53 gene expression is associated with patient prognosis (TCGA analysis), as low 

transcriptional levels correlate with poor 3-years survival. Moreover, USF1 and TP53 

expression levels directly impact their target genes such as those related to DNA repair, cell 

cycle regulation and p53 signaling pathways. Furthermore, low USF1 gene expression in GC 

patients is mainly associated with Hp status. Thus, Hp-positive gastric tumors with low USF1 

and TP53 levels may identify a subgroup of patients with poor prognosis. Together these data 
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demonstrate that USF1 has tumor suppressive functions and that its low level should be 

considered as a potential marker of cancer susceptibility. 

We also show that Hp infection delocalizes the nuclear factor USF1 at the periphery of 

cells into foci that resemble aggregates. This occurs concomitantly with a diminution of its 

nuclear amount, as schematized in figure 8A. This phenotype is only observed in Hp-infected 

cells and not after exposure to DNA damaging agents. The unexpected cellular localization of 

USF1 may impair its transcriptional regulatory function, reducing the expression of its NER 

target genes CSA and HR23A in infected cells. It also controls its biological function, impairing 

nuclear USF1/p53 complex formation. Indeed, Hp-mediated USF1 depletion diminishes the 

stabilization of p53 that is known to contribute to genetic instability and oncogenic properties 

of the infection. 

 USF1 as part of the b-HLH-LZ transcription factor family is well known for its nuclear 

function29. The Hp-mediated delocalization of USF1 outside the nucleus was unexpected. The 

underlying mechanism and the cellular structure involved remain to be clarified. It may well be 

that Hp-infection induces USF1 post-translational modifications modulating its nuclear-

cytoplasmic trafficking, that results in its cytoplasmic/membrane accumulation. This could 

represent an Hp strategy to prevent USF1 transcriptional function, impairing its tumor 

suppressive activity and DNA repair functions. Alternatively, USF1 foci could correspond to 

protein aggregation due to infection-induced misfolding, as recently reported the formation of 

aggresomes by Twist1, another b-HLH-LZ transcription factor 48. 

In response to a genotoxic stress, USF1 and p53 interact promoting p53 stabilization 

and blocking its interaction with the E3-ubiquitin ligase HDM2, thereby abrogating subsequent 

p53 degradation33. We show that nuclear depletion of USF1 parallels the p53 decrease in Hp-

infected cells. Under this condition, we speculate that the nuclear level of USF1 is too low to 

ensure p53 stabilization, limiting the formation of USF1/p53 complexes. Importantly, infection 
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of cells by Hp prior to CPT- (MMS or H2O2) treatment maintains the cytoplasmic/membrane 

delocalization of USF1, indicating that once initiated this process is sustained even in the 

absence of a new Hp challenge. Hp-induced accumulation of USF1 outside the nucleus could 

thus constitute a “point of no return”, after which USF1 is no more available to undertake its 

nuclear functions. This suggests that Hp-infection may weaken DNA repair ability of cells 

exposed to genotoxic stress. As illustrated in figure 8B, Hp can persist all lifelong, promoting 

DNA damage, which thus results from the combined effects of the infection and exposure to 

genotoxic environmental factors, increasing the risk of GC. 

In conclusion, this study demonstrated that USF1 is a new central regulator of DNA 

damage and repair in response to Hp infection. The absence of USF1 results in the promotion 

of gastric carcinogenesis as demonstrated in vivo with the Usf1-/- mice, which constitute a new 

powerful tool to deepen our understanding of the molecular cascade from pre-neoplasia to GC 

development. Our findings are also of clinical relevance and pave the way to propose the USF1 

level as a potential biomarker for GC. 

 

METHODS 

Cells culture and bacteria growth conditions, mice infection and histology, analysis of genes 

expression, proteins and imaging procedures and data banks used in in silico study are reported 

in the supplementary information. 

 

Bacteria and cells 

Human gastric epithelial cells, MKN45 (received from C. Reis’s laboratory, Porto, 

Portugal), were used in this study and infected with Hp strains 7.1339 and SS138. 

 

Analysis of protein complexes by proximity ligation assay (PLA) 
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The USF1/p53 complexes were visualized by Duolink proximity ligation assay (PLA)40, as 

reported in the supplementary information. Imaging analysis was carried out using an inverted 

widefield microscope Axio Observer Z1 equipped with Apotome grid (Carl Zeiss, Germany). 

 

Human gastric biopsies 

All patients were adults, informed and signed a consent letter. The study was approved by 

the Local Ethical Committees from the National Council for Research on Health, IMSS, Mexico 

and Florence University Hospital, Italy. 

Gastric biopsies (tumoral and adjacent tissue) were from GC patients who attended the 

Instituto Mexicano del Seguro Social (IMSS), Medical Center SXXI in Mexico (n=28) and the 

Florence University Hospital (n=6). For each patient, diagnosis was based on endoscopic 

examination and histopathologic analysis. 

 

Hp infection in mice 

Mice experiments were carried out according to the European Directives (2010/63/UE). The 

project was approved by the Comité d’Ethique en Expérimentation Animale (CETEA), Institut 

Pasteur (Ref 00317.02) and the Federative Structure of Research, Rennes (Ref APAFIS#905-

2015060515515795 v4). 

Usf1-/-37 and Usf1+/+ mice (C57BL/6j 129SV) were from S. Vaulont (Institut Cochin, Paris, 

France) and INS-GAS mice49,50 from TC Wang (Columbia University College, NY, USA).  

 
Statistical Analysis 

Statistical analysis was performed using the Student-t test or Mann-Whitney test, after being 

assessed for normality of samples distribution. Results were considered significant if p<0.05. 

Kaplan-Meier survival analysis assumption was performed on the TCGA data set 

(https://cancergenome.nih.gov). 
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Legend of figures 

Figure 1. Correlation of p53 and USF1 loss with gastric carcinogenesis and Hp infection. 

(A) Expression Heatmap depicting mRNA expression of genes distinguishing most 

significantly GC patients according to their overall survival. Expression data for (low survival: 

665 days or high survival: 1095 days) were obtained from TCGA (STAD, n=188) (see 

Supplementary figure S1A). (B) Survival curve for GC patients according to USF1 and TP53 

mRNA levels (low: green, medium: blue or high: red). (C) Expression Heatmap depicting 

median mRNA expression of p53 target genes (Fisher_direct_p53_targets_meta_analysis, 

GSEA) and putative USF1 target genes (Genes having at least one occurrence of transcription 

factor binding site V$USF_01 (v7.4 TRANSFAC) in the regions spanning up to 4 kb around 

their transcription starting sites, GSEA, significantly enriched in both low and high survival 

GC patients (top 50 genes, see supplementary figure S1E-F). (D) Expression Heatmap depicting  

p53 and USF1-target genes expression (p53-targets: orange and pink; USF1-targets: blue and 

green; common: black), previously correlated with low (pink and green) or high survival 

(orange and blue) using data from Hippo and coll34 comparing noncancerous and cancerous 

tissues. (E) Relative USF1 gene expression in gastric biopsies from GC patients (n=34) 

measured by qRT-PCR (tumoral vs adjacent tissue); bar: median value. Mann-Whitney test 

(low (<1) vs high (>1) expression; ****p<0.0001). (G) Log-fold enrichment of p53- and USF1-

target genes expression in Hp-infected gastric cells. Data from GSE55699 (Koeppel and coll)16 

and E-GEOD-74577 (Hong and coll.). 

 

Figure 2. Loss of USF1 exacerbates gastric tumorigenesis associated to Hp infection. 

 Usf1-/- and Usf1+/+ mice were oro-gastrically infected with HpSS1 for 9 and 12 months as 

described in the supplementary methods (A) Representative gastric histological changes on 

H&E stained tissue section, in Usf1-/- (d, e, f, j, k ,l) and Usf1+/+ (a, b, c, g, h, i) mice, Hp-
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infected (b, c, e, f, h, i, j, k,l) and non-infected (a, d, g, j), after 9 months (a-f) and 12 months 

(g-l). As early as 9 months, cysts and atypia are observed in Usf1-/--infected mice (arrows). 

Dysplasia is only detected in Usf1-/- infected mice at 9 months pi (arrows). (B) Semi-

quantitative evaluation of gastric lesions in Hp-infected Usf1-/- and Usf1+/+ mice (see 

supplementary information). Mann-Whitney test, infected vs non-infected (*, p<0.05). (C) p53 

IF (green) and nuclei (Hoechst, blue) on gastric tissue sections from Hp-infected Usf1-/- and 

Usf1+/+ mice at 12 months pi, showing a depletion of p53 in Hp-infected Usf1-/- mice. Scale bar 

100µm.  

 

Figure 3. Hp impairs host DNA repair function by down-regulating USF1 and p53. 

MKN45 cells were infected with Hp7.13 (MOI 100:1) for 2 and 24h. Control cells were not 

infected. (A) USF1 (C) TP53 (E) paired USF1-TP53 (F) CSA, HR23A and GADD45A mRNA 

level quantified by RT-qPCR. Results are relative to the 18SrRNA. Mean±SD, n=3. (B) WB 

analysis of (B) USF1 (E) p53 and GAPDH (loading control) in protein extracts from infected 

and non-infected cells. The histogram below corresponds to immunoblot quantification. Error 

bars: SD, n=3. Student t test, infected vs non-infected (*p<0.05; **p<0.01; ****p<0.0001). 

 

Figure 4. Hp leads to USF1 foci in the vicinity of cell membranes. 

(A) Immunofluorescence analysis of USF1 and p53 levels and localization in MKN45 cells 

infected as in figure 3. p53 immunostaining (red), USF1 (green) and nuclei (Hoechst, blue). 

Phalloidin actin staining (grey) indicates the cells shape. Scale bar 5µm. (B) Quantification of 

USF1 and p53 nuclear IF intensity (n=150-220 cells/condition). Mann-Whitney test, infected 

vs non-infected (*p<0.05; ****p<0.0001). (C) Maximum intensity projection of representative 

Hp-infected and non-infected cells at 24h. USF1 staining (green) shows foci (yellow arrows) 

in the cytoplasm and vicinity of cell membranes in infected-cells (left part). Quantification of 
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USF1 spots number per cell according to defined spot criteria as indicated in material and 

methods (right panel) (n=150-220 cells/condition). Experiments in triplicate with 5-7 

microscopic fields analysed. Mann-Whitney test, infected vs non-infected (*p<0.05; 

****p<0.0001). 

 

Figure 5. USF1 foci are specifically induced by Hp infection. 

(A) IF analysis of USF1 and p53 levels and localization, in MKN45 cells treated or not with 

CPT(50nm) and infected with Hp 7.13 for 2 and 24h. p53 (red), USF1 (green), nuclei (Hoechst, 

blue) and phalloidin actin staining (grey). The delocalization and accumulation of USF1 are 

specifically observed in the cytoplasm and membrane surrounding area of Hp-infected/CPT-

treated cells. Scale bar 5µm. (B) Quantification of USF1 and p53 nuclear IF intensity (n=150-

220 cells/condition).  (C) Quantification of USF1 spots number/cell as in figure 4. USF1 foci 

are only observed in the presence of Hp. (n=150-220 cells/condition). Mann Whitney test: 

treated or treated/infected vs control (**p<0.01; ***p<0.001; ****p<0.0001). Experiments in 

triplicate with 5-7 fields analysed. 

 

Figure 6. Hp inhibits the USF1/p53 complexes in response to a chemical genotoxic stress. 

(A) Duolink PLA analysis of USF1/p53 complexes (pink foci), in Hp-infected cells either CPT-

treated (50nM) or not as described in methods. Nuclei (Hoechst, blue). Experiments in duplicate 

(5-7 fields analysed).  Scale bar: 10µm for each time-point: right panels zoom: fields delimited 

in red, scale bar 5µm. (B) Quantification of USF1/p53 nuclear interaction. (5-7 fields analyzed). 

Student t test, CPT-treated and/or infected vs control (*p<0.05; **p<0.01; ***p<0.001). 
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Figure 7. Hp infection makes more susceptible gastric cells to a genotoxic stress. 

(A) Experimental schedule. MKN45 cells were first infected with Hp 7.13 or not, as in figure 

3. After 24h, cells were washed 3 times and either treated or not with CPT (50nM) for 24h. (B) 

IF analysis of USF1 (green) and p53 (red).  Nuclei (Hoechst, blue) and phalloidin actin staining 

(grey). Experiments in duplicate (5-7 fields analysed per condition). Scale bar 5µm.  

 

Figure 8: Schematic representation of the data. 

(A) Gastric epithelial cells infected with Hp show lower nuclear level of USF1 and p53 and the 

formation of USF1 foci mainly at the periphery of cells close to membranes. Hp infection 

inhibits USF1 and CPT-induced USF1/p53 complexes in the nuclei. These data support that, in 

response to a genotoxic stress, the nuclear localization of USF1 is important to maintain p53 in 

the nucleus to carry out its function. (B) Exacerbation of gastric carcinogenesis due to 

synergistic effects of Hp and environmental DNA damaging factors in chronically-infected 

individuals. According to our data, the progressive nuclear decrease of USF1 and p53 in Hp-

positive subjects should lead to further accumulation of DNA damage all lifelong. This supports 

that Hp increases the sensitivity to DNA damaging effects of genotoxic environmental factors, 

thus promoting the risk of GC. 
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Results 

 

Cytoplasmic aggregation of USF1 is associated with depletion of p53 and gastric 

intraepithelial neoplasia in INS-GAS mice infected with Hp 

To investigate the clinical relevance of Hp-induced cytoplasmic accumulation of USF1, 

we took advantage of the INS-GAS mouse model in which Hp accelerates the development of 

gastric intraepithelial neoplasia1,2. As expected, at 6 and 12 months pi mice developed earlier 

than non-infected, severe gastric hyperplasia, dysplasia and low-grade gastric intraepithelial 

neoplasia (figure S6A). IF analysis on gastric tissue sections showed a marked cytoplasmic 

accumulation of USF1 in Hp-infected mice (figure S6B), associated to the decrease of p53 

levels, as reported at 12 months pi (figure S6C). These results are consistent with in vitro data 

and confirm that USF1 accumulates overtime pi outside the nuclei of Hp-infected gastric 

epithelial cells, concomitantly to p53 depletion.  

 

Material and methods 

 

Bacteria, cell culture and infection 

Human gastric epithelial cells, AGS: gastric adenocarcinoma (CRL-1739, ATCC-LGC) and 

MKN45 used in this study were cultured in RPMI 1640 medium with 10% fetal bovine serum 

(FBS) and 1% penicillin-streptomycin. Hp strains 7.133 and SS14 were grown at 37°C on 10% 

blood agar plates under microaerophilic conditions. Bacterial lysates were obtained by passage 

through a French press and their proteins concentration determined by Dc Protein assay (Bio-

Rad, Hercules, CA, USA). 

 

 



	 	 33	

Cells preparation, immunostaining and microscopy  

Cells were fixed on slides with 4% paraformaldehyde (PFA) in 0.1M Phosphate buffer (15735-

60S, Electron Microscopy Sciences) for 15min at room temperature (RT), incubated 1h at RT 

in quenching buffer (NH4Cl 50mM, PBS). The primary antibodies used were, anti-USF1 

(Ab167693, Abcam; 1/100), anti-p53 (FL-393) (sc-6243, Santa Cruz Biotechnology, CA, USA; 

1/200) and anti-gH2AX (p-Ser139) (NB100-384, Novus Biologicals 1/2500). The nuclear DNA 

was stained with NucBlue® Live ReadyProbes® Reagent ((R37605), Thermo Fisher Scientific, 

USA) and actin stained with Alexa Fluor® 647 Phalloidin (A22287, Thermo Fisher Scientific, 

USA, 1/100). Sample images were acquired with an Inverted Widefield Microscope Axio 

Observer Z1 equipped with Apotome grid (Carl Zeiss, Germany) with a Plan-Apochromat 

63x1.40 Oil M27 objective. In the case of MMS and H2O2 experiments (Figures S8 to S10), 

image acquisition was performed using a spinning disk SP8 microscope. Random field images 

were acquired as 211.30 × 211.30 µm2 with a depth of 100µm at 7µm increment. 

 

Image processing and immunofluorescence quantification  

After acquisition, a maximum of intensity projection processing from images were done using 

automated free plugins of the imageJ v1.50 software interface5. Image analysis was carried out 

using Acapella software (version 2.7, PerkinElmer Life Sciences). The script was subdivided 

into three object subroutines segmenting successively the nucleus, the cytoplasm, and USF1 

spots within the cytoplasm and membrane surrounding area of each cell. First the cell regions 

are determined by nuclei and cytoplasm detection library modules using the appropriated 

channel images. Spots corresponding to USF1 foci are detected in the cytoplasm body areas 

using Alexa Fluor AF488 channel. The parameters of the detected spots, (e.g. number, 

intensity) are added to the cell object list. A number of numerical output values is generated. 

Spot candidates are detected as local intensity maximums within cytoplasm. Thereupon the 
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spots are selected by contrast and intensity parameters. For each condition, 5 microscopic fields 

were analysed and n=150 to 220 cells quantified. 

 

Analysis of gene expression 

Human gastric epithelial cells MKN45 were infected with the Hp strains at a multiplicity of 

infection (MOI) of 100 bacteria per cell for 2 and 24h. 

Total RNA was isolated from MKN45 cells, from mice stomach or from human gastric 

biopsies using the RNeasy Mini Kit (Qiagen). It was reverse-transcribed using Superscriptâ III 

Reverse transcriptase (Invitrogen) and amplified with Power Sybr Green PCR Master Mix 

(Applied Biosystems) using the StepOneTM Plus Real-Time PCR system (Applied Biosystems). 

Primers used for each gene are listed in the table S2. Target genes were normalized according 

to the 18SrRNA genes for analysis in MKN45 cells. The analysis of USF1 gene expression in 

human gastric biopsies was performed using the Real-Time PCR TaqMan gene expression kit 

(Applied Biosystems), normalized according to the 18SrRNA gene, with commercial primers 

reported in the supplementary table S1. Amplification PCR consisted in 40 cycles of 15 seconds 

at 95°C and 1 min 60°C. Data were analysed by StepOne Plus RT-PCR software v2.1. 

Experiments were performed in triplicate. 
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Table S1: List of human primers used for the quantification of gene expression 
 
 
Gene name Primer 
FH1_USF1 TCACAAAGAATTGACCAGTG 
RH1_USF1 GACGCACTATACTTACTTCC 
FH1_TP53 ACCTATGGAAACTACTTCCTG 
RH1_TP53 ACCATTGTTCAATATCGTCC 
hCSA-F GTTCCAATGGAGAAAACACACTT 
hCSA-R CCATATGGTACAAAAACAAATTCTGA 
hHR23A-F GTCACCATCACGCTCAAAAC 
hHR23A-R CTATCTTCTCCTTTAGCACCTTCAC 
hGADD45a-F TCAGCGCACGATCACTGTC  
GADD45a-R CCAGCAGGCACAACACCAC 
hp21/CDKN1A-F CTGGAGACTCTCAGGGTCGAA 
hp21/CDKN1A-R CGGCGTTTGGAGTGGTAGA 
FH1_RN18S1 ATCGGGGATTGCAATTATTC 
RH1_RN18S1 CTCACTAAACCATCCAATCG 
FH1_TBP GCCAAGAGTGAAGAACAG 
RH1_TBP GAAGTCCAAGAACTTAGCTG 

 
Primers for TaqMan® Gene Expression Assays  
(Applied Biosystems, Foster City, CA) 
 
Gene name Primer 
Human USF1 Hs00982868_m1        
Human 18S Hs99999901_s1 

 
 
Analysis of protein levels by Western blot  

After co-culture with Hp, cells were lysed in NP-40 buffer containing protease inhibitors; 

30 µg per lane was separated on a 12 % Mini-PROTEAN® TGX Stain-Free™ Precast Gels 

(BioRad) and transferred onto Trans-Blot® Turbo™ Midi PVDF Transfer Packs using a Trans-

Blot® Turbo™ Transfer System (BioRad). USF1 (EPR6430 ab125020 ; Abcam, dilution 

1/5000), USF2 antibodies ((C-20) Ref sc-862 ; Santa Cruz Biotechnology, CA,USA; dilution 

1/200), GAPDH ((FL-335) sc-05778, Santa Cruz Biotechnology, CA,USA; 1/100), p53 ((FL-

393) sc-6243, Santa Cruz Biotechnology, CA,USA; dilution 1/100), b-Actin ((BA3R) (MA5-

15739), ThermoFisher Scientific, USA, dilution 1/5000) were used followed by a goat anti-

rabbit IgG-HRP (sc-2054, Santa Cruz Biotechnology, CA,USA; 1/10000) or Anti-Mouse IgG 
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HRP Conjugate ((W402B), Promega, Dilution 1/5000). Detection was performed using the 

SuperSignal™ West Femto Maximum Sensitivity Substrate (ThermoFisher Scientific, USA) 

and a ChemiDoc XRS (Bio-Rad). Western blot data were quantified by densitometry using 

Image Lab software (Bio-Rad). 

 

Analysis of protein complexes by proximity ligation assay (PLA) 

MKN45 Cells, grown on glass coverslips, were fixed with 4% PFA in 0.1M Phosphate buffer 

(15735-60S, Electron Microscopy Sciences) for 15min at RT and PLA was performed using 

the kits ((DUO92007) Duolink® in Situ Detection Reagent Orange, (DUO92001) Duolink® in 

Situ PLA® Probe Anti-Mouse PLUS, (DUO92005) Duolink® in Situ PLA® Probe Anti-Rabbit 

MINUS, Sigma) according to the manufacturer’s protocol. After blocking, the reaction with 

primary antibodies, rabbit anti-USF1 (C20, sc-229, Santa Cruz Biotechnology, CA, USA, 

1/100) and mouse anti-p53 (1C12, #2524, Cell Signaling Technologies, MA, USA, 1/100) was 

performed. Protein-protein interactions are revealed with species-specific secondary antibodies 

conjugated to complementary oligonucleotide allowing ligation and amplification of 

complementary DNA if the two proteins are in close proximity6. 

 

In silico analyses 

Heatmaps were generated with R-packages heatmap37. Gene Set Enrichment Analysis were 

performed using GSEA 3.0 tool from the Broad Institute software 

(http://software.broadinstitute.org/cancer/software/gsea)8. STAD TCGA expression data were 

obtained using cBioPortal (https://www.cbioportal.org/)9.  

Expression data were obtained from GSE268510, GSE5569911, .E-GEOD-74577 (Hong et al) 

(https://www.ebi.ac.uk/arrayexpress/experiments/), GSE508112 and E-MEXP-113513 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-1135/). 
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Gene set enrichment analysis (GSEA version 3.0)9 was performed by ranking TCGA (STAD, 

low survival versus high survival for gastric cancer patients) genes based on their cZ-score as 

metric. Different ranked lists were used including low (top 25%) versus high (top 25%) survival 

for gastric cancer patients (STAD, n=188). The following gene signatures were analyzed for 

enrichment: KEGG pathways gene sets, using p53 target genes 

(FISCHER_DIRECT_P53_TARGETS_META_ANALYSIS Gene set, n=298) or using 

USF putative target genes (USF_01 Gene set, n=256) 

(http://software.broadinstitute.org/gsea/msigdb). 

 

Genotyping of INS-GAS mice 

Usf1-/-14 and Usf1+/+ wild-type (WT) mice (C57BL/6j 129SV) previously provided by S. 

Vaulont (Institut Cochin, Paris, France) were maintained under specific pathogen free (SPF) 

conditions and reproduced in the animal facility (University of Rennes) (ARCHE-BIOSIT 

UMS 34380 (N°A35 23840). The USF1 deletion in Usf1-/- mice was validated by PCR using 

the following primers: USF1-Int2-F (WT or KO): TTGGGAACCATGTTACGAGG, USF1-

IRES-R (KO): TACCCGGGGATCCTCTAGAG, and USF1-Int4-R (WT): 

ACAGCTACTCCTCCAAGCCAC.  

INS-GAS mice1,2 (FVB/N genetic background) were breeded at the animal facility (Institut 

Pasteur, Paris), from couples provided by TC Wang (Columbia University College, NY, USA). 

The INS-GAS trans-gene2 was confirmed in all mice by tail genotyping using the PCR primers: 

Forward: 5’ TGATCTTTGCACTGGCTCTG3’ and Reverse: 

5’TCCATCCATCCATAGGCTTC3’.  

 

Hp infection of mice 

For both mouse models, 14 5-6 weeks-old male mice were orally inoculated with Hp SS1 (108 
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colony-forming units (cfu)/100µl) at days 1 and 3; non-infected mice (n=14) received peptone 

broth. After 6 (9 months for Usf1-/-) and 12 months mice were sacrificed (n=7/group). Gastric 

tissues were collected for histopathological and immunofluorescence analysis as already 

reported15. Hp gastric colonization was evaluated as previously described16.  

 

Histopathology analysis of gastric lesions 

Stomach samples from non-infected and infected mice were fixed in RCL2® (Alphelys, 

France) and embedded in low-melting-point paraffin wax (Poly Ethylene Glycol Distearate; 

Sigma, USA). 4 µm-thick sections were stained by hematoxylin and eosin treatment (H&E) 

and examined blindly for histopathologic lesions. Histologic alterations (i.e. inflammation, 

ulceration, foveolar hyperplasia, intestinal metaplasia, parietal cell loss, dysplastic changes of 

the gastric mucosa and herniation), which were semi-quantitatively evaluated based on a 

scoring system with five severity grades (1: minimal, 2: mild, 3: moderate, 4: marked and 5: 

severe) were characterized as previously described15.  

 

Immunofluorescence on gastric tissues from mice 

Gastric tissue sections (4 µm) were taken from infected and control mice were dewaxed (5min 

(2x) Xylene, 2min (2x) Ethanol 100%), rehydrated 5min in PBS-1X, blocked 1h in PBS-1X + 

3% BSA + 0.4% Triton X-100 at room temperature (RT). Then incubated with the primary 

antibody anti-USF1 ((C-20) sc-229, Santa Cruz Biotechnology, CA, USA; dilution 1/100), anti-

p53 monoclonal Antibody (SP5) MA5-14516, ThermoFisher Scientific, USA; dilution 1/100) 

in PBS-1X, 0.4% Triton X-100 and 3% BSA overnight at 4°C. A secondary Goat anti-rabbit 

IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546 ((A11035), 

ThermoFisher Scientific, USA, dilution 1/400) in PBS-1X + 0,4% Triton X-100 + 3% BSA 

was applied. The nuclear DNA was stained with NucBlue® Live ReadyProbes® Reagent 
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((R37605), ThermoFisher Scientific, USA). USF1 staining were observed with an Inverted 

widefield Microscope Axio Observer ZI equipped with Apotome grid (Carl Zeiss, Germany) 

using a 63x/1.4 oil immersion objective. p53 staining were acquired at 20X with Axio scan  Z1 

Zeiss® by using Zen software. 
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Legend of supplementary figures 
 
Figure S1. Involvement of p53 pathway and USF1 targets in gastric carcinogenesis. 

(A) Survival curve for GC patients (TCGA, STAD n=188) according to SLC7A2 mRNA level, 

a most discriminant gene (25% top low: blue or 25% to high: red). (B) Survival curve for GC 

patients according to USF1 and TP53 mRNA levels (low: green, medium: blue or high: red).  

(C) Correlation of USF1 and TP53 mRNA level expression from the stomach of gastric 

adenocarcinoma patients (TCGA, Provisional n=478; cBioPortal: https://www.cbioportal.org/). 

Each symbol corresponds to one patient. (D) Expression Heatmap, in GC patients associated 

with both low and high survival, and depicting median mRNA expression of genes specific to 

the different KEGG pathways (KEGG gene sets), and that have been shown to be enriched after 

Gene Set Enrichment Analysis (GSEA, broadinstitute), (E-F) Gene Set Enrichment Analysis 

(GSEA, broadinstitute) in GC patients associated with both low and high survival, (E) using 

p53 target genes (FISCHER_DIRECT_P53_TARGETS_META_ANALYSIS Gene set, 

n=298) or (F) using USF putative target genes (USF_01 Gene set, n=256). (G) Relative USF1 

gene expression in gastric biopsies from GC patients (n=34) measured by qRT-PCR (tumoral 

vs adjacent tissue), comparison between Hp-positive and Hp-negative patients. A trend for a 

lower USF1 gene expression in the tumor-tissue vs adjacent-tissue is observed in Hp-positive 

patients compared to Hp-negative patients.( Mann-Whitney test; Hp-positive vs Hp-negative).  

 

Figure S2. p53 and USF1 loss correlate with the deregulation of their target genes and low 

survival of GC patients 

Expression Heatmap depicting mRNA expression of top 50 p53-target genes 

(Fisher_direct_p53_targets_meta_analysis, GSEA) and top 50 putative USF1-target genes 

(Genes having at least one occurrence of the transcription factor binding site V$USF_01 (v7.4 

TRANSFAC) in the regions spanning up to 4 kb around their transcription starting sites, 
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GSEA), that have been significantly enriched in both low and high survival GC population. p53 

and USF1 target genes (p53-targets: orange and pink; USF1-targets: blue and green; common 

targets: black), previously correlated with low (pink and green) or high survival (orange and 

blue) using expression data from Hippo and coll10 comparing noncancerous and cancerous 

tissues (Figure 1D).  

 

Figure S3. Lack of USF1 leads to inhibition of the expression of p53- and USF1-target 

genes in Hp-infected Usf1-/- mice. 

 (A) Expression Heatmap depicting mRNA expression of p53 and USF1 target genes previously 

correlated with low or high survival (figure 1A-C), using data from GSE5081 (Galamb and 

coll)12 for gastric biopsies of patients with Hp-positive and Hp-negative antrum erosions (E+) 

(8/8) and adjacent normal mucosae (E-) (8/8) (p53-targets: orange and pink; USF1-targets: blue 

and green; common: black). (B) Log-fold enrichment for p53 and USF1 target genes expression 

in chronically HpSSI infected and non-infected mice after 12 months from E-MEXP-1135 

(Vivas and coll)13 (C) Gastric colonization measured from stomach fragments isolated from 

Usf1+/+ and Usf1-/- mice sacrificed after 9 and 12 months of infection with HpSS1. The non-

infected control groups are not colonized and are not reported. The number of colonies forming 

unit (cfu) was determined as previously described16. (D) Expression of the p53-targets 

GADD45, CDKN1A, PCNA; CSA, HR23A genes related to the NER pathway regulated by both 

USF1 and p53, and RAB31 an USF1-target measured by RT-qPCR, on RNA isolated from the 

stomach of Usf1-/- and Usf1+/+ mice infected for 12 months as described in the supplementary 

methods. The absence of USF1, in Usf1-/- mice, leads to the inhibition of the expression of 

HR23A and CSB, as well as GADD45, PCNA and RAB31 gene expression in infected mice. 

Mean±SD. Student t test; infected vs non-infected (*p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001). 



	 	 43	

Figure S4. Hp total extracts inhibit USF1 and p53 levels and impair host DNA repair 

function. 

Human adenocarcinoma gastric epithelial cells MKN45 cells were treated with total extracts of 

the strain Hp7.13 at 50µg/ml and 100µg/ml for 2h and 24h. Control cells were not treated. (A) 

USF1, (C) TP53 and (E) CSA and HR23A mRNA were quantified by RT-qPCR. (B) USF1 (D) 

p53 and GAPDH (loading control) western blots analysis. Under this condition, an inhibition 

of USF1 gene expression was observed, as well as protein level at 24h pi, in agreement with a 

cag-PAI-independent regulation, as we previously observed17. The TP53 gene expression and 

protein level are also down-regulated, as CSA and HR23A. The histogram below corresponds 

to the immunoblot quantification normalized to GAPDH as described in the methods section. 

Mean±SD, n=3. Student t test; infected vs non-infected (** p<0.01; ****p<0.0001). (F) 

Analysis of gH2AX levels indicating the presence of DSB in MKN45 cells infected with Hp 

7.13 at MOI 100:1 for 2h and 24h, gH2AX immunofluorescence staining (red) and nuclei 

(Hoechst, blue). Experiments have been done in duplicate with 5 to 7 microscopic fields 

analysed for each condition. Scale bar: 2µm. 

 

Figure S5. The Hp strain SS1 used to colonize the mice stomach also inhibits USF1 and 

p53 level in vitro. 

Human adenocarcinoma gastric epithelial cells MKN45 cells were infected with the Hp strain 

SS1 at MOI 100:1 for 2h and 24h. Control cells were not infected. (A) USF1, (C) TP53 mRNA 

were quantified by RT-qPCR and (B) USF1, (D) p53 protein levels analyzed by western blot. 

HpSS1 also inhibits USF1 and p53 gene expression and protein level, but at a lower extent 

compared to Hp7.13 (see figure 3). The histogram below corresponds to the immunoblot 

quantification normalized to GAPDH as described in material and methods. Mean±SD, n=3. 

Student t test; infected vs non-infected (**p<0.01; *** p<0.001). 
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Figure S6. Hp leads to USF1 cytoplasmic accumulation in the gastric mucosa of INS-GAS 

mice and induces gastric cancer lesions. 

Mice were orally infected with Hp SS1 for 6 and 12 months, and gastric lesions compared to 

non-infected mice. (A) Representative gastric histological changes in Hp-infected mice (b, d) 

and non-infected (NI) (a, c) after 6 (a, b) and 12 months (c, d) on H&E stained paraffin sections. 

Scale bar: 500 µm. Infected mice at 6 months pi (b) show hyperplastic and metaplastic lesions 

compared to controls (a). At 12 months, infected-mice (d) display more severe hyperplasia and 

dysplasia than uninfected-mice (c) with low-grade gastric intraepithelial neoplasia, as defined 

by dysplasia and herniation into the sub-mucosa. (B) USF1 IF (green) and nuclei (Hoechst, 

blue) in gastric tissue sections after 6 (left part) and 12 months (right part), showing a 

predominant USF1 staining and accumulation in the cytoplasm of gastric cells, observed 

concomitantly with the presence of gastric intraepithelial neoplasia. Scale bar, 20µm. (C) p53 

immunostaining (green) in gastric tissue section from Hp-infected and non-infected INS-GAS 

mice after 12 months. Also in this genetic background and concomitantly to the development 

of gastric intraepithelial neoplasia, Hp inhibits p53 levels, in parallel to USF1 delocalisation.  

 

Figure S7. Induction of DSB in CPT-treated cells infected with Hp. 

IF analysis of gH2AX levels indicating the presence of DSB in MKN45 cells treated with CPT 

(50nM) and infected or not with Hp7.13 at MOI 100:1 for 24h. gH2AX (red) and nuclei 

(Hoechst, blue). Experiments have been done in duplicate with 5 to 7 microscopic fields 

analysed for each condition.  
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Figure S8. The induction of USF1 foci is Hp-dependent and not observed in MMS-treated 

cells  

(A) IF analysis of USF1 and p53 levels and localization, in MKN45 cells treated or not with 

MMS (1mM) and infected with Hp 7.13 or not-infected, for 2 and 24h. p53 (red), USF1 (green), 

nuclei (Hoechst, blue) and phalloidin actin staining (grey). The delocalization and accumulation 

of USF1 are specifically observed in the cytoplasm and membrane surrounding area of Hp-

infected/MMS-treated cells. Scale bar 5µm. (B) Quantification of USF1 and p53 cellular IF 

intensity. IF intensity measured for USF1 and p53 is decreased in MMS-treated cells and Hp 

infected (n=150-220 cells/condition). (C) Quantification of USF1 spots number/cell as in figure 

5, showing that USF1 foci are only observed in the presence of Hp as in the case of CPT±Hp 

cells (see figure 5). (n=150-220 cells/condition), Mann-Whitney test, treated/infected vs control 

((*p<0.05; ****p<0.0001). Experiments in triplicate with 5-7 fields analysed. 

 

Figure S9. The induction of USF1 foci is Hp-dependent and not observed in H2O2-treated 

cells  

(A) IF analysis of USF1 and p53 levels and localization, in MKN45 cells treated or not with 

H2O2 (1mM) and infected with Hp 7.13 for 2 and 24h. p53 (red), USF1 (green), nuclei (Hoechst, 

blue) and phalloidin actin staining (grey). The delocalization and accumulation of USF1 are 

specifically observed in the cytoplasm and membrane surrounding area of Hp-infected/H2O2-

treated cells. Scale bar 5µm. (B) Quantification of USF1 and p53 cellular IF intensity which is 

decreased in H2O2-treated cells and Hp infected, as previously observed in CPT (or MMS)-

treated/infected cells (n=150-220 cells/condition). (C) Quantification of USF1 spots 

number/cell as in figure 3. A significant increase of USF1 foci is only observed in the presence 

of Hp. (n=150-220 cells/condition), Mann-Whitney test, treated/infected vs control 

(****p<0.0001). Experiments in triplicate with 5-7 fields analysed. 
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Figure S10. The formation of USF1 foci is maintained in previously Hp-infected cells, 

whatever the genotoxic stress underwent by cells. 

MKN45 cells were first infected with Hp 7.13 or not, as described in the supplementary 

information. After 24h, cells were washed 3 times and either treated or not with (A) MMS 

(1mM) and (B) H2O2 (1mM) for 24h as in figure 7A. IF analysis of USF1 (green) and p53 (red).  

Nuclei (Hoechst, blue) and phalloidin actin staining (grey). In both cases, either MMS or H2O2 

post-infection treatment, USF1 foci are observed in the peripheral/cytoplasmic parts of cells, as 

observed in CPT-treated cells 24h post-Hp infection (see figure 7B). Scale bar 5µm.  
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