J. C. Kendrew, R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies et al., Structure of myoglobin: A three-dimensional Fourier synthesis at 2 A. resolution, Nature, vol.185, pp.422-427, 1960.

C. C. Blake, D. F. Koenig, G. A. Mair, A. C. North, D. C. Phillips et al., Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution, Nature, vol.206, pp.757-761, 1965.

M. F. Perutz, H. Miurhead, J. M. Cox, L. C. Goaman, F. S. Mathews et al., Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: (1) x-ray analysis, Nature, vol.219, pp.29-32, 1968.

J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution, Nature, vol.318, pp.618-624, 1986.

K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, pp.251-260, 1997.

P. Cramer, D. A. Bushnell, and R. D. Kornberg, Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution, Science, vol.292, pp.1863-1876, 2001.

M. Selmer, C. M. Dunham, F. V. Murphy, A. Weixlbaumer, S. Petry et al., Structure of the 70S ribosome complexed with mRNA and tRNA, Science, vol.313, pp.1935-1942, 2006.

T. W. Jeng, R. A. Crowther, G. Stubbs, and W. Chiu, Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy, J. Mol. Biol, vol.205, pp.251-257, 1989.

R. A. Crowther, L. A. Amos, J. T. Finch, D. J. De-rosier, and A. Klug, Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs, Nature, vol.226, pp.421-425, 1970.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao et al., Breaking cryo-EM resolution barriers to facilitate drug discovery, Cell, vol.165, pp.1698-1707, 2016.

A. E. Leschziner and E. Nogales, Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions, Annu. Rev. Biophys. Biomol. Struct, vol.36, pp.43-62, 2007.

C. M. Spahn and P. A. Penczek, Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM, Curr. Opin. Struct. Biol, vol.19, pp.623-631, 2009.

H. E. White, A. Ignatiou, D. K. Clare, and E. V. Orlova, Structural study of heterogeneous biological samples by cryoelectron microscopy and image processing, Biomed. Res. Int, vol.2017, p.1032432, 2017.

D. Schneidman-duhovny, R. Pellarin, and A. Sali, Uncertainty in integrative structural modeling, Curr. Opin. Struct. Biol, vol.28, pp.96-104, 2014.

B. Webb, S. Viswanath, M. Bonomi, R. Pellarin, C. H. Greenberg et al., Integrative structure modeling with the integrative modeling platform, Protein Sci, vol.27, pp.245-258, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02406448

J. Luo, P. Cimermancic, S. Viswanath, C. C. Ebmeier, B. Kim et al., Architecture of the human and yeast general transcription and DNA repair factor TFIIH, Mol. Cell, vol.59, pp.794-806, 2015.

P. J. Robinson, M. J. Trnka, R. Pellarin, C. H. Greenberg, D. A. Bushnell et al., Molecular architecture of the yeast Mediator complex, Elife, vol.4, 2015.

P. J. Robinson, M. J. Trnka, D. A. Bushnell, R. E. Davis, P. J. Mattei et al., Structure of a complete mediator-RNA polymerase II pre-initiation complex, Cell, vol.166, pp.1411-1422, 2016.

P. C. Whitford, A. Ahmed, Y. Yu, S. P. Hennelly, F. Tama et al., Excited states of ribosome translocation revealed through integrative molecular modeling, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.18943-18948, 2011.

J. Fernandez-martinez, S. J. Kim, Y. Shi, P. Upla, R. Pellarin et al., Structure and function of the nuclear pore complex cytoplasmic mRNA export platform, Cell, vol.167, pp.1215-1228, 2016.

S. J. Kim, J. Fernandez-martinez, I. Nudelman, Y. Shi, W. Zhang et al., Integrative structure and functional anatomy of a nuclear pore complex, Nature, vol.555, pp.475-482, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02404474

E. Obayashi, R. E. Luna, T. Nagata, P. Martin-marcos, H. Hiraishi et al., Molecular landscape of the ribosome preinitiation complex during mRNA scanning: structural role for eIF3c and its control by eIF5, Cell. Rep, vol.18, pp.2651-2663, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02406441

Y. Shi, J. Fernandez-martinez, E. Tjioe, R. Pellarin, S. J. Kim et al., Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex, Mol. Cell. Proteomics MCP, vol.13, pp.2927-2943, 2014.

Y. Shi, R. Pellarin, P. C. Fridy, J. Fernandez-martinez, M. K. Thompson et al., A strategy for dissecting the architectures of native macromolecular assemblies, Nat. Methods, vol.12, pp.1135-1138, 2015.

F. C. Holstege, E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner et al., Dissecting the regulatory circuitry of a eukaryotic genome, Cell, vol.95, pp.717-728, 1998.

Y. Takagi and R. D. Kornberg, Mediator as a general transcription factor, J. Biol. Chem, vol.281, pp.80-89, 2006.

Y. J. Kim, S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg, A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II, Cell, vol.77, pp.599-608, 1994.

R. D. Kornberg, Mediator and the mechanism of transcriptional activation, Trends Biochem. Sci, vol.30, pp.235-239, 2005.

L. A. Allison and C. J. Ingles, Mutations in RNA polymerase II enhance or suppress mutations in GAL4, Proc. Natl. Acad. Sci. U. S. A, vol.86, pp.2794-2798, 1989.

C. Scafe, D. Chao, J. Lopes, J. P. Hirsch, S. Henry et al., RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals, Nature, vol.347, pp.491-494, 1990.

S. M. Liao, I. C. Taylor, R. E. Kingston, and R. A. Young, RNA polymerase II carboxyterminal domain contributes to the response to multiple acidic activators in vitro, Genes Dev, vol.5, pp.2431-2440, 1991.

J. Soutourina, S. Wydau, Y. Ambroise, C. Boschiero, and M. Werner, Direct interaction of RNA polymerase II and mediator required for transcription in vivo, Science, vol.331, pp.1451-1454, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00819232

E. Paul, Z. I. Zhu, D. Landsman, and R. H. Morse, Genome-wide association of mediator and RNA polymerase II in wild-type and mediator mutant yeast, Mol. Cell. Biol, vol.35, pp.331-342, 2015.

P. J. Robinson, D. A. Bushnell, M. J. Trnka, A. L. Burlingame, and R. D. Kornberg, Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.17931-17935, 2012.

P. J. Laybourn and M. E. Dahmus, Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription, J. Biol. Chem, vol.265, pp.13165-13173, 1990.

J. Q. Svejstrup, Y. Li, J. Fellows, A. Gnatt, S. Bjorklund et al., Evidence for a mediator cycle at the initiation of transcription, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.6075-6078, 1997.

T. Max, M. Sogaard, and J. Q. Svejstrup, Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator, J. Biol. Chem, vol.282, pp.14113-14120, 2007.

C. Jeronimo, M. F. Langelier, A. R. Bataille, J. M. Pascal, B. F. Pugh et al., Tail and kinase modules differently regulate core mediator recruitment and function in vivo, Mol. Cell, vol.64, pp.455-466, 2016.

N. Petrenko, Y. Jin, K. H. Wong, and K. Struhl, Mediator undergoes a compositional change during transcriptional activation, Mol. Cell, vol.64, pp.443-454, 2016.

W. A. Whyte, D. A. Orlando, D. Hnisz, B. J. Abraham, C. Y. Lin et al., Master transcription factors and mediator establish super-enhancers at key cell identity genes, Cell, vol.153, pp.307-319, 2013.

D. Hnisz, K. Shrinivas, R. A. Young, A. K. Chakraborty, and P. A. Sharp, A phase separation model for transcriptional control, Cell, vol.169, pp.13-23, 2017.

W. K. Cho, J. H. Spille, M. Hecht, C. Lee, C. Li et al., Mediator and RNA polymerase II clusters associate in transcription-dependent condensates, Science, vol.361, pp.412-415, 2018.

P. S. Brzovic, C. C. Heikaus, L. Kisselev, R. Vernon, E. Herbig et al., The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex, Mol. Cell, vol.44, pp.942-953, 2011.

L. M. Tuttle, D. Pacheco, L. Warfield, J. Luo, J. Ranish et al., Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein-protein complex, Cell. Rep, vol.22, pp.3251-3264, 2018.

A. Boija, I. A. Klein, B. R. Sabari, A. Dall'agnese, E. L. Coffey et al., Transcription factors activate genes through the phase-separation capacity of their activation domains, Cell, vol.175, pp.1842-1855, 2018.

D. Russel, K. Lasker, B. Webb, J. Velazquez-muriel, E. Tjioe et al., Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies, e1001244, PLoS Biol, vol.10, 2012.

M. Habeck, M. Nilges, and W. Rieping, Replica-exchange Monte Carlo scheme for bayesian data analysis, 018105, Phys. Rev. Lett, vol.94, 2005.

F. J. Asturias, Y. W. Jiang, L. C. Myers, C. M. Gustafsson, and R. D. Kornberg, Conserved structures of mediator and RNA polymerase II holoenzyme, Science, vol.283, pp.985-987, 1999.

B. Guglielmi, N. L. Van-berkum, B. Klapholz, T. Bijma, M. Boube et al., A high resolution protein interaction map of the yeast Mediator complex, Nucleic Acids Res, vol.32, pp.5379-5391, 2004.

C. M. Thompson, A. J. Koleske, D. M. Chao, and R. A. Young, A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast, Cell, vol.73, pp.1361-1375, 1993.

L. C. Myers, C. M. Gustafsson, D. A. Bushnell, M. Lui, H. Erdjument-bromage et al., The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain, Genes Dev, vol.12, pp.45-54, 1998.

Y. C. Lee and Y. J. Kim, Requirement for a functional interaction between mediator components Med6 and Srb4 in RNA polymerase II transcription, Mol. Cell. Biol, vol.18, pp.5364-5370, 1998.

T. I. Lee, J. J. Wyrick, S. S. Koh, E. G. Jennings, E. L. Gadbois et al., Interplay of positive and negative regulators in transcription initiation by RNA polymerase II holoenzyme, Mol. Cell. Biol, vol.18, pp.4455-4462, 1998.

J. S. Kang, S. H. Kim, M. S. Hwang, S. J. Han, Y. C. Lee et al., The structural and functional organization of the yeast mediator complex, J. Biol. Chem, vol.276, pp.42003-42010, 2001.

M. L. Nonet and R. A. Young, Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II, Genetics, vol.123, pp.715-724, 1989.

C. M. Thompson and R. A. Young, General requirement for RNA polymerase II holoenzymes in vivo, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.4587-4590, 1995.

L. Lariviere, S. Geiger, S. Hoeppner, S. Rother, K. Strasser et al., Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20, vol.13, pp.895-901, 2006.

T. Imasaki, G. Calero, G. Cai, K. L. Tsai, K. Yamada et al., Architecture of the Mediator head module, Nature, vol.475, pp.240-243, 2011.

G. Cai, T. Imasaki, K. Yamada, F. Cardelli, Y. Takagi et al., Mediator head module structure and functional interactions, Nat. Struct. Mol. Biol, vol.17, pp.273-279, 2010.

M. Seizl, L. Lariviere, T. Pfaffeneder, L. Wenzeck, and P. Cramer, Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization, Nucleic Acids Res, vol.39, pp.6291-6304, 2011.

S. Baumli, S. Hoeppner, and P. Cramer, A conserved mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer, vol.280, pp.18171-18178, 2005.

T. Koschubs, M. Seizl, L. Lariviere, F. Kurth, S. Baumli et al., Identification, structure, and functional requirement of the Mediator submodule Med7N/31, EMBO J, vol.28, pp.69-80, 2009.

J. K. Thakur, H. Arthanari, F. Yang, S. J. Pan, X. Fan et al., A nuclear receptor-like pathway regulating multidrug resistance in fungi, Nature, vol.452, pp.604-609, 2008.

P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson et al., A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae, Nature, vol.403, pp.623-627, 2000.

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori et al., A comprehensive two-hybrid analysis to explore the yeast protein interactome, Proc Natl Acad Sci U A, vol.98, pp.4569-4574, 2001.

S. S. Koh, A. Z. Ansari, M. Ptashne, and R. A. Young, An activator target in the RNA polymerase II holoenzyme, Mol. Cell, vol.1, pp.895-904, 1998.

T. Koschubs, K. Lorenzen, S. Baumli, S. Sandstrom, A. J. Heck et al., Preparation and topology of the Mediator middle module, Nucleic Acids Res, vol.38, pp.3186-3195, 2010.

F. Zhang, L. Sumibcay, A. G. Hinnebusch, and M. J. Swanson, A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p, Mol. Cell. Biol, vol.24, pp.6871-6886, 2004.

J. Beve, G. Z. Hu, L. C. Myers, D. Balciunas, O. Werngren et al., The structural and functional role of Med5 in the yeast Mediator tail module, J. Biol. Chem, vol.280, pp.41366-41372, 2005.

K. L. Tsai, C. Tomomori-sato, S. Sato, R. C. Conaway, J. W. Conaway et al., Subunit architecture and functional modular rearrangements of the transcriptional mediator complex, Cell, vol.158, 2014.

X. Wang, Q. Sun, Z. Ding, J. Ji, J. Wang et al., Redefining the modular organization of the core Mediator complex, Cell. Res, vol.24, pp.796-808, 2014.

A. Sakai, Y. Shimizu, S. Kondou, T. Chibazakura, and F. Hishinuma, Structure and molecular analysis of RGR1, a gene required for glucose repression of Saccharomyces cerevisiae, Mol. Cell. Biol, vol.10, pp.4130-4138, 1990.

Y. Li, S. Bjorklund, Y. W. Jiang, Y. J. Kim, W. S. Lane et al., Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.10864-10868, 1995.

M. A. Cevher, Y. Shi, D. Li, B. T. Chait, S. Malik et al., Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit, Nat. Struct. Mol. Biol, vol.21, pp.1028-1034, 2014.

K. L. Tsai, X. Yu, S. Gopalan, T. C. Chao, Y. Zhang et al., Mediator structure and rearrangements required for holoenzyme formation, Nature, vol.544, pp.196-201, 2017.

K. Nozawa, T. R. Schneider, and P. Cramer, Core Mediator structure at 3.4 A extends model of transcription initiation complex, Nature, vol.545, pp.248-251, 2017.

S. Schilbach, M. Hantsche, D. Tegunov, C. Dienemann, C. Wigge et al., Structures of transcription pre-initiation complex with TFIIH and Mediator, Nature, vol.551, pp.204-209, 2017.

L. Lariviere, C. Plaschka, M. Seizl, L. Wenzeck, F. Kurth et al., Structure of the Mediator head module, Nature, vol.492, pp.448-451, 2012.

L. Lariviere, C. Plaschka, M. Seizl, E. V. Petrotchenko, L. Wenzeck et al., Model of the Mediator middle module based on protein cross-linking, Nucleic Acids Res, vol.41, pp.9266-9273, 2013.

E. Guzman and J. T. Lis, Transcription factor TFIIH is required for promoter melting in vivo, Mol. Cell. Biol, vol.19, pp.5652-5658, 1999.

G. S. Winkler, S. J. Araujo, U. Fiedler, W. Vermeulen, F. Coin et al., TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair, J. Biol. Chem, vol.275, pp.4258-4266, 2000.

W. J. Feaver, O. Gileadi, Y. Li, and R. D. Kornberg, CTD kinase associated with yeast RNA polymerase II initiation factor b, Cell, vol.67, pp.1223-1230, 1991.

Y. He, J. Fang, D. J. Taatjes, and E. Nogales, Structural visualization of key steps in human transcription initiation, Nature, vol.495, pp.481-486, 2013.

K. Murakami, K. L. Tsai, N. Kalisman, D. A. Bushnell, F. J. Asturias et al., Structure of an RNA polymerase II preinitiation complex, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.13543-13548, 2015.

B. J. Gibbons, E. J. Brignole, M. Azubel, K. Murakami, N. R. Voss et al., Subunit architecture of general transcription factor TFIIH, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.1949-1954, 2012.

H. J. Himmelfarb, J. Pearlberg, D. H. Last, and M. Ptashne, GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators, Cell, vol.63, pp.1299-1309, 1990.

M. Tanaka, Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo, Proc. Natl. Acad. Sci. U.S.A, vol.93, pp.4311-4315, 1996.

C. Bernecky and D. J. Taatjes, Activator-mediator binding stabilizes RNA polymerase II orientation within the human mediator-RNA polymerase II-TFIIF assembly, J. Mol. Biol, vol.417, pp.387-394, 2012.

E. Vojnic, A. Mourao, M. Seizl, B. Simon, L. Wenzeck et al., Structure and VP16 binding of the Mediator Med25 activator interaction domain, vol.18

M. J. Trnka, Methods, vol.159, pp.404-409, 2011.

E. Herbig, L. Warfield, L. Fish, J. Fishburn, B. A. Knutson et al., Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains, Mol. Cell. Biol, vol.30, pp.2376-2390, 2010.

I. Jedidi, F. Zhang, H. Qiu, S. J. Stahl, I. Palmer et al., Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo, J. Biol. Chem, vol.285, pp.2438-2455, 2010.

A. Leitner, T. Walzthoeni, A. Kahraman, F. Herzog, O. Rinner et al., Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics, Mol. Cell. Proteomics, vol.9, pp.1634-1649, 2010.

C. Yu and L. Huang, Cross-linking mass spectrometry: an emerging technology for interactomics and structural biology, Anal. Chem, vol.90, pp.144-165, 2018.

F. Chu, D. T. Thornton, and H. T. Nguyen, Chemical cross-linking in the structural analysis of protein assemblies, Methods, vol.144, pp.53-63, 2018.

O. Rinner, J. Seebacher, T. Walzthoeni, L. N. Mueller, M. Beck et al., Identification of cross-linked peptides from large sequence databases, Nat. Methods, vol.5, pp.315-318, 2008.

, Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography, Molecular & Cellular Proteomics, 2019.

R. H. Perry, R. G. Cooks, and R. J. Noll, Orbitrap mass spectrometry: Instrumentation, ion motion and applications, Mass Spectrom. Rev, vol.27, pp.661-699, 2008.

T. Walzthoeni, M. Claassen, A. Leitner, F. Herzog, S. Bohn et al., False discovery rate estimation for cross-linked peptides identified by mass spectrometry, Nat. Methods, vol.9, pp.901-903, 2012.

B. Yang, Y. Wu, M. Zhu, S. Fan, J. Lin et al., Identification of cross-linked peptides from complex samples, Nat. Methods, vol.9, pp.904-906, 2012.

M. J. Trnka, P. R. Baker, P. J. Robinson, A. L. Burlingame, and R. J. Chalkley, Matching cross-linked peptide spectra: only as good as the worse identification, Mol. Cell. Proteomics, vol.13, pp.420-434, 2014.

J. P. Erzberger, F. Stengel, R. Pellarin, S. Zhang, T. Schaefer et al., Molecular architecture of the 40S?eIF1?eIF3 translation initiation complex, Cell, vol.158, pp.1123-1135, 2014.

X. Tang and J. E. Bruce, A new cross-linking strategy: protein interaction reporter (PIR) technology for protein -protein interaction studies, Mol. Biosyst, vol.6, pp.939-947, 2010.

A. Kao, C. Chiu, D. Vellucci, Y. Yang, V. R. Patel et al., Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes, Mol. Cell. Proteomics, vol.10, 2011.

D. K. Schweppe, J. D. Chavez, C. F. Lee, A. Caudal, S. E. Kruse et al., Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry, Proc. Natl. Acad. Sci, 2017.

F. Liu, P. Lössl, B. M. Rabbitts, R. S. Balaban, and A. J. Heck, The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes, Mol. Cell. Proteomics, vol.17, pp.216-232, 2018.

D. Fasci, H. Van-ingen, R. A. Scheltema, and A. J. Heck, Histone interaction landscapes visualized by crosslinking mass spectrometry in intact cell nuclei, Mol. Cell. Proteomics, vol.17, 2018.

A. Leitner, T. Walzthoeni, and R. Aebersold, Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline, Nat. Protoc, vol.9, pp.120-137, 2014.

A. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche et al., Proteome survey reveals modularity of the yeast cell machinery, Nature, vol.440, pp.631-636, 2006.

N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo et al., Nature, vol.440, pp.637-643, 2006.

C. Plaschka, L. Larivière, L. Wenzeck, M. Seizl, M. Hemann et al., Architecture of the RNA polymerase II-Mediator core initiation complex, Nature, vol.518, pp.376-380, 2015.

K. Murakami, H. Elmlund, N. Kalisman, D. A. Bushnell, C. M. Adams et al., Architecture of an RNA polymerase II transcription pre-initiation complex, Science, vol.342, p.1238724, 2013.

C. Bich, S. Maedler, K. Chiesa, F. Degiacomo, N. Bogliotti et al., Reactivity and applications of new amine reactive cross-linkers for mass spectrometric detection of protein?protein complexes, Anal. Chem, vol.82, pp.172-179, 2010.

E. V. Petrotchenko and C. H. Borchers, Crosslinking combined with mass spectrometry for structural proteomics, Mass Spectrom. Rev, vol.29, pp.862-876, 2010.

A. Leitner, L. A. Joachimiak, P. Unverdorben, T. Walzthoeni, J. Frydman et al., Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes, Proc. Natl. Acad. Sci, vol.111, pp.9455-9460, 2014.

D. R. Müller, P. Schindler, H. Towbin, U. Wirth, H. Voshol et al., Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis, Anal. Chem, vol.73, pp.1927-1934, 2001.

F. Chu, S. Mahrus, C. S. Craik, and A. L. Burlingame, Isotope-coded and affinity-tagged cross-linking (ICATXL): An efficient strategy to probe protein interaction surfaces, J. Am. Chem. Soc, vol.128, pp.10362-10363, 2006.

M. A. Lauber and J. P. Reilly, Novel amidinating cross-linker for facilitating analyses of protein structures and interactions, Anal. Chem, vol.82, pp.7736-7743, 2010.

M. J. Trnka and A. L. Burlingame, Topographic studies of the GroEL/GroES chaperonin complex by chemical crosslinking using diformyl ethynylbenzene (DEB): the power of high resolution electron transfer dissociation (ETD) for determination of both peptide sequences and their attachment sites, Mol. Cell. Proteomics, 2010.

S. Pfammatter, E. Bonneil, F. P. Mcmanus, S. Prasad, D. J. Bailey et al., A novel differential ion mobility device expands the depth of proteome coverage and the sensitivity of multiplex proteomic measurements, Mol. Cell. Proteomics, vol.17, pp.2051-2067, 2018.

F. Meier, A. Brunner, S. Koch, H. Koch, M. Lubeck et al., Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer, Mol. Cell. Proteomics, vol.17, pp.2534-2545, 2018.

, Mobile and localized protons: a framework for understanding peptide dissociation -Wysocki -2000, 2019.

D. M. Good, M. Wirtala, G. C. Mcalister, and J. J. Coon, Performance characteristics of electron transfer dissociation mass spectrometry, Mol. Cell. Proteomics, vol.6, pp.1942-1951, 2007.

L. Earley, L. C. Anderson, D. L. Bai, C. Mullen, J. E. Syka et al., Front-end electron transfer dissociation: a new ionization source, Anal. Chem, vol.85, pp.8385-8390, 2013.

, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry, Nature Methods, vol.10, 2019.

F. Alber, S. Dokudovskaya, L. M. Veenhoff, W. Zhang, J. Kipper et al., The molecular architecture of the nuclear pore complex, Nature, vol.450, pp.695-701, 2007.

R. Algret, J. Fernandez-martinez, Y. Shi, S. J. Kim, R. Pellarin et al., Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway, Mol. Cell. Proteomics MCP, vol.13, pp.2855-2870, 2014.

S. Viswanath and A. Sali, Optimizing model representation for integrative structure determination of macromolecular assemblies, Proc. Natl. Acad. Sci. U. S. A, vol.116, pp.540-545, 2019.

M. Bonomi, S. Hanot, C. H. Greenberg, A. Sali, M. Nilges et al., Bayesian weighing of electron cryo-microscopy data for integrative structural modeling, Struct. Lond. Engl, vol.6, issue.27, pp.175-188, 1993.
URL : https://hal.archives-ouvertes.fr/pasteur-02404465

F. Alber, F. Förster, D. Korkin, M. Topf, and A. Sali, Integrating diverse data for structure determination of macromolecular assemblies, Annu. Rev. Biochem, vol.77, pp.443-477, 2008.

W. Rieping, M. Habeck, and M. Nilges, Inferential structure determination, Science, vol.309, pp.303-306, 2005.

J. A. Davis, Y. Takagi, R. D. Kornberg, and F. A. Asturias, Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction, Mol. Cell, vol.10, pp.409-415, 2002.

S. Viswanath, I. E. Chemmama, P. Cimermancic, A. Sali, A. et al., Methods, vol.159, pp.4-22, 2019.

, of stochastic sampling for integrative modeling of macromolecular structures, Biophys. J, vol.113, pp.2344-2353, 2017.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

Z. Grabarek and J. Gergely, Zero-length crosslinking procedure with the use of active esters, Anal. Biochem, vol.185, issue.90, p.90267, 1990.

M. , 2-trifluoroethyl)benzoic acid, a highly photolabile carbene generating label readily fixable to biochemical agents, Liebigs Ann. Chem, vol.2, pp.1510-1523, 1983.

M. Schneider, A. Belsom, J. Rappsilber, and O. Brock, Blind testing of cross-linking/ mass spectrometry hybrid methods in CASP11, Proteins Struct. Funct. Bioinforma, vol.84, pp.152-163, 2016.

Y. Takizawa, E. Binshtein, A. L. Erwin, T. M. Pyburn, K. F. Mittendorf et al., While the revolution will not be crystallized, biochemistry reigns supreme, Protein Sci, vol.26, pp.69-81, 2017.

L. Fischer, Z. A. Chen, and J. Rappsilber, Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers, J. Proteomics, vol.88, pp.120-128, 2013.

, A general method for targeted quantitative cross-linking mass spectrometry, 2019.

, Developing a multiplexed quantitative cross-linking mass spectrometry platform for comparative structural analysis of protein complexes -analytical chemistry, 2019.

P. Tompa and M. Fuxreiter, Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions, Trends Biochem. Sci, vol.33, pp.2-8, 2008.

R. Sharma, Z. Raduly, M. Miskei, and M. Fuxreiter, Fuzzy complexes: Specific binding without complete folding, FEBS Lett, vol.589, pp.2533-2542, 2015.

A. J. Wirth and M. Gruebele, Quinary protein structure and the consequences of crowding in living cells: Leaving the test-tube behind, vol.35, pp.984-993, 2013.

E. H. Mcconkey, Molecular evolution, intracellular organization, and the quinary structure of proteins, Proc. Natl. Acad. Sci, vol.79, pp.3236-3240, 1982.

R. D. Cohen and G. J. Pielak, A cell is more than the sum of its (dilute) parts: A brief history of quinary structure, Protein Sci, vol.26, pp.403-413, 2017.

T. Ikeya, D. Ban, D. Lee, Y. Ito, K. Kato et al., Solution NMR views of dynamical ordering of biomacromolecules, Biochim. Biophys. Acta Gen. Subj, pp.287-306, 1862.

P. Cuniasse, P. Tavares, E. V. Orlova, and S. Zinn-justin, Structures of biomolecular complexes by combination of NMR and cryoEM methods, vol.43, pp.104-113, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02192080

T. Ando, S. P. Bhamidimarri, N. Brending, H. Colin-york, L. Collinson et al., The 2018 correlative microscopy techniques roadmap, vol.443001, 2018.

A. Gingras, K. T. Abe, and B. Raught, Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles, Curr. Opin. Chem. Biol, vol.48, pp.44-54, 2019.

L. Wang and M. R. Chance, Protein footprinting comes of age: mass spectrometry for biophysical structure assessment, Mol. Cell. Proteomics MCP, vol.16, pp.706-716, 2017.

I. A. Sawyer, J. Bartek, and M. Dundr, Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing, Semin. Cell Dev. Biol, 2018.

, Who's In and Who's Out-Compositional Control of Biomolecular Condensates -ScienceDirect, 2019.

A. G. Larson, D. Elnatan, M. M. Keenen, M. J. Trnka, J. B. Johnston et al., Liquid droplet formation by HP1? suggests a role for phase separation in heterochromatin, Nature, vol.547, pp.236-240, 2017.

B. R. Sabari, A. Dall'agnese, A. Boija, I. A. Klein, E. L. Coffey et al., Coactivator condensation at super-enhancers links phase separation and gene control, Science, vol.361, p.3958, 2018.