, André D (1887) Solution directe du problème résolu par M. Bertrand. CR Acad Sci, vol.105, pp.436-437

A. Boc, H. Philippe, and V. Makarenkov, Inferring and validating horizontal gene transfer events using bipartition dissimilarity, Syst Biol, vol.59, issue.2, pp.195-211, 2010.

D. Bogdanowicz and K. Giaro, Matching split distance for unrooted binary phylogenetic trees, IEEE/ACM Trans Comput Biol Bioinf, vol.9, issue.1, pp.150-160, 2012.

I. Charon, L. Denoeud, A. Guénoche, and O. Hudry, Maximum transfer distance between partitions, J Classif, vol.23, issue.1, pp.103-121, 2006.

W. Day, The complexity of computing metric distances between partitions, Math Soc Sci, vol.1, issue.3, pp.269-287, 1981.

W. Day, Optimal algorithms for comparing trees with labeled leaves, J Classif, vol.2, issue.1, pp.7-28, 1985.

L. Denoeud, Transfer distance between partitions, Adv Data Anal Classif, vol.2, issue.3, pp.279-294, 2008.

D. P. Dubhashi and A. Panconesi, Concentration of measure for the analysis of randomized algorithms, Syst Zool, vol.19, issue.1, pp.83-92, 1970.

W. Feller, Confidence limits on phylogenies: an approach using the bootstrap, vol.1, pp.783-791, 1968.

W. M. Fitch, Toward defining the course of evolution: minimum change for a specific tree topology, Syst Zool, vol.20, issue.4, pp.406-416, 1971.

M. Fréchet, Minimum mutation fits to a given tree, Les probabilités associées à un système d'événements compatibles et dépendants. Actualités scientifiques et industrielles, Hermann & Cie Hartigan JA, vol.29, pp.53-65, 1940.

D. M. Hillis and J. J. Bull, An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis, Syst Biol, vol.42, issue.2, pp.182-192, 1993.

W. Hoeffding, Probability inequalities for sums of bounded random variables, J Am Stat Assoc, vol.58, issue.301, pp.13-30, 1963.

F. Lemoine, D. Entfellner, J. B. Wilkinson, E. Correia, D. et al., Renewing Felsenstein's phylogenetic bootstrap in the era of big data, Nature, vol.556, issue.7702, pp.452-456, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-02078445

Y. Lin, V. Rajan, and B. Moret, A metric for phylogenetic trees based on matching, IEEE/ACM Trans Comput Biol Bioinf, vol.9, issue.4, pp.1014-1022, 2012.

G. Mohanty, Lattice path counting and applications, Probability and mathematical statistics, 1979.

S. Régnier, Sur quelques aspects mathématiques des problèmes de classification automatique, ICC Bull, vol.4, pp.175-191, 1965.

D. Robinson and L. Foulds, Comparison of phylogenetic trees, Math Biosci, vol.53, issue.1, pp.131-147, 1981.

C. Semple and M. Steel, Phylogeny: discrete and random processes in evolution, CBMS-NSF Regional Conference Series on Mathematics, Society for Industrial and Applied Mathematics Steel M, Penny D (2005) Maximum parsimony and the phylogenetic information in multi-state characters. In: Albert V (ed) Parsimony, phylogeny and genomics, pp.163-178, 2003.

, Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations