A. J. Roger, S. A. Muñoz-gómez, and R. Kamikawa, The origin and diversification of Mitochondria, Curr Biol, vol.27, pp.1177-1192, 2017.

J. Nunnari and A. Suomalainen, Mitochondria: in sickness and in health, Cell, vol.148, pp.1145-1159, 2012.

R. B. Seth, L. Sun, C. Ea, and Z. J. Chen, Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3, Cell, vol.122, pp.669-682, 2005.

S. Tait and D. R. Green, Mitochondria and cell death: outer membrane permeabilization and beyond, Nat Rev Mol Cell Biol, vol.11, pp.621-632, 2010.

A. Pagliuso, P. Cossart, and F. Stavru, The ever-growing complexity of the mitochondrial fission machinery, Cell Mol Life Sci, vol.75, pp.355-374, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01574994

T. Wai and T. Langer, Mitochondrial dynamics and metabolic regulation, Trends Endocrinol Metab, vol.27, pp.105-117, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02391015

P. Mishra and D. C. Chan, Mitochondrial dynamics and inheritance during cell division, development and disease, Nat Rev Mol Cell Biol, vol.15, pp.634-646, 2014.

M. A. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends Microbiol, vol.20, pp.360-368, 2012.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.92, p.90188, 1992.

F. Stavru, F. Bouillaud, A. Sartori, D. Ricquier, and P. Cossart, Listeria monocytogenes transiently alters mitochondrial dynamics during infection, Proc Natl Acad Sci, vol.108, pp.3612-3617, 2011.

F. Stavru, A. E. Palmer, C. Wang, R. J. Youle, and P. Cossart, Atypical mitochondrial fission upon bacterial infection, Proc Natl Acad Sci, vol.110, pp.16003-16008, 2013.

N. Gillmaier, A. Götz, A. Schulz, W. Eisenreich, and W. Goebel, Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes, PLoS One, vol.7, 2012.

C. Odendall, E. Dixit, F. Stavru, H. Bierne, K. M. Franz et al., Diverse intracellular pathogens activate type III interferon expression from peroxisomes, Nat Immunol, vol.15, pp.717-726, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204372

S. A. Killackey, M. T. Sorbara, and S. E. Girardin, Cellular aspects of Shigella pathogenesis: focus on the manipulation of host cell processes, Front Cell Infect Microbiol, vol.6, 2016.

T. Van-nhieu, G. , K. Liu, B. Zhang, J. Pierre et al., Actinbased confinement of calcium responses during Shigella invasion, Nat Commun, vol.4, 1567.

M. Lum and R. Morona, Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection, Int J Med Microbiol, vol.304, pp.530-541, 2014.

S. Mostowy, M. Bonazzi, M. A. Hamon, T. N. Tham, A. Mallet et al., Entrapment of intracytosolic bacteria by septin cage-like structures, Cell Host Microbe, vol.8, pp.433-444, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01376115

A. Sirianni, S. Krokowski, D. Lobato-márquez, S. Buranyi, J. Pfanzelter et al., Mitochondria mediate septin cage assembly to promote autophagy of Shigella, EMBO Rep, vol.17, pp.1029-1043, 2016.

L. Carneiro, L. H. Travassos, F. Soares, I. Tattoli, J. G. Magalhaes et al., Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells, Cell Host Microbe, vol.5, pp.123-136, 2009.

J. F. Koterski, M. Nahvi, M. M. Venkatesan, and B. Haimovich, Virulent Shigella flexneri causes damage to mitochondria and triggers necrosis in infected human monocyte-derived macrophages, Infect Immun, vol.73, pp.504-513, 2005.

S. K. Sahni and E. Rydkina, Host-cell interactions with pathogenic Rickettsia species, Future Microbiol, vol.4, pp.323-339, 2009.

J. J. Martinez and P. Cossart, Early signaling events involved in the entry of Rickettsia conorii into mammalian cells, J Cell Sci, vol.117, pp.5097-5106, 2004.

V. V. Emelyanov and M. Y. Vyssokikh, On the nature of obligate intracellular symbiosis of rickettsiae-Rickettsia prowazekii cells import mitochondrial porin, Biochemistry (Mosc), vol.71, pp.38-48, 2006.

D. R. Clifton, R. A. Goss, S. K. Sahni, D. Van-antwerp, R. B. Baggs et al., NF-?B-dependent inhibition of apoptosis is essential for host cellsurvival during Rickettsia rickettsii infection, Proc Natl Acad Sci, vol.95, pp.4646-4651, 1998.

S. G. Joshi, C. W. Francis, D. J. Silverman, and S. K. Sahni, Nuclear factor ?B protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity, Infect Immun, vol.71, pp.4127-4136, 2003.

S. G. Joshi, C. W. Francis, D. J. Silverman, and S. K. Sahni, NF-kappaB activation suppresses host cell apoptosis during Rickettsia rickettsii infection via regulatory effects on intracellular localization or levels of apoptogenic and anti-apoptotic proteins, FEMS Microbiol Lett, vol.234, pp.333-341, 2004.

H. J. Newton, D. Ang, I. R. Van-driel, and E. L. Hartland, Molecular pathogenesis of infections caused by Legionella pneumophila, Clin Microbiol Rev, vol.23, pp.274-298, 2010.

M. A. Horwitz, Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes, J Exp Med, vol.158, pp.1319-1331, 1983.

A. L. Newsome, R. L. Baker, R. D. Miller, and R. R. Arnold, Interactions between Naegleria fowleri and Legionella pneumophila, Infect Immun, vol.50, pp.449-452, 1985.

E. W. Sun, M. L. Wagner, A. Maize, D. Kemler, E. Garland-kuntz et al., Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics, PLoS One, vol.8, 2013.

P. Escoll, O. R. Song, F. Viana, B. Steiner, T. Lagache et al., Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages, Cell Host Microbe, vol.22, pp.302-316, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01687682

I. Derré and R. R. Isberg, Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila, Infect Immun, vol.72, pp.6221-6229, 2004.

R. K. Laguna, E. A. Creasey, Z. Li, N. Valtz, and R. R. Isberg, A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death, Proc Natl Acad Sci, vol.103, pp.18745-18750, 2006.

S. Banga, P. Gao, X. Shen, V. Fiscus, W. Zong et al.,

, Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family, Proc Natl Acad Sci, vol.104, pp.5121-5126

P. Dolezal, A. M. Tong, J. Jiang, J. H. Marobbio, C. M. Lee et al., Legionella pneumophila secretes a mitochondrial carrier protein during infection, CORRECTION PLoS Pathog, vol.8, issue.10, p.1002459, 2012.

E. L. Corbett, C. J. Watt, N. Walker, D. Maher, B. G. Williams et al., The growing burden of tuberculosis: global trends and interactions with the HIV epidemic, Arch Intern Med, vol.163, pp.1009-1021, 2003.

R. K. Dubey, Assuming the role of mitochondria in mycobacterial infection, Int J Mycobacteriol, vol.5, pp.379-383, 2016.

J. Keane, M. K. Balcewicz-sablinska, H. G. Remold, G. L. Chupp, B. B. Meek et al., Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis, Infect Immun, vol.65, pp.298-304, 1997.

J. Zhang, R. Jiang, H. Takayama, and Y. Tanaka, Survival of virulent Mycobacterium tuberculosis involves preventing apoptosis induced by Bcl-2 upregulation and release resulting from necrosis in J774 macrophages, Microbiol Immunol, vol.49, pp.845-852, 2005.

L. M. Sly, S. M. Hingley-wilson, N. E. Reiner, and W. R. Mcmaster, Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1, J Immunol, vol.170, pp.430-437, 2003.

M. Chen, H. Gan, and H. G. Remold, A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis, J Immunol, vol.176, pp.3707-3716, 2006.

E. Abarca-rojano, P. Rosas-medina, P. Zamudio-cortéz, R. Mondragón-flores, and F. J. Sánchez-garcía, Mycobacterium tuberculosis virulence correlates with mitochondrial cytochrome c release in infected macrophages, Scand J Immunol, vol.58, pp.419-427, 2003.

S. Jamwal, M. K. Midha, H. N. Verma, A. Basu, K. Rao et al.,

, Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis, Sci Rep, vol.3, 1328.

E. Cheng, T. V. Sheiko, J. K. Fisher, W. J. Craigen, and S. J. Korsmeyer, VDAC2 inhibits BAK activation and mitochondrial apoptosis, Science, vol.301, pp.513-517, 2003.

K. Fine-coulson, S. Giguère, F. D. Quinn, and B. J. Reaves, Infection of A549 human type II epithelial cells with Mycobacterium tuberculosis induces changes in mitochondrial morphology, distribution and mass that are dependent on the early secreted antigen, ESAT-6, Microbes Infect, vol.17, pp.689-697, 2015.

P. Cossart and P. J. Sansonetti, Bacterial invasion: the paradigm of enteroinvasive pathogens, Science, vol.304, pp.242-248, 2004.

S. K. Eng, P. Pusparajah, A. Mutalib, N. S. Ser, H. L. Chan et al., Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance, Front Life Sci, vol.8, pp.284-293, 2015.

H. Ruan, Z. Zhang, L. Tian, S. Wang, S. Hu et al., The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria, Biochem Biophys Res Commun, vol.478, pp.768-783, 2010.

A. N. Layton, P. J. Brown, and E. E. Galyov, The Salmonella translocated effector SopA is targeted to the mitochondria of infected cells, J Bacteriol, vol.187, pp.3565-3571, 2005.

J. Kamanova, H. Sun, M. Lara-tejero, and J. E. Galán, The Salmonella effector protein SopA modulates innate immune responses by targeting TRIM E3 ligase family members, PLoS Pathog, vol.12, 2016.

L. D. Hernandez, M. Pypaert, R. A. Flavell, and J. E. Galán, A Salmonella protein causes macrophage cell death by inducing autophagy, J Cell Biol, vol.163, pp.1123-1131, 2003.

C. Elwell, K. Mirrashidi, and J. Engel, Chlamydia cell biology and pathogenesis, Nat Rev Microbiol, vol.14, pp.385-400, 2016.

S. F. Fischer, T. Harlander, J. Vier, and G. Häcker, Protection against CD95-induced apoptosis by chlamydial infection at a mitochondrial step, Infect Immun, vol.72, pp.1107-1115, 2004.

S. F. Fischer, J. Vier, S. Kirschnek, A. Klos, S. Hess et al., Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins, J Exp Med, vol.200, pp.905-916, 2004.

T. Fan, H. Lu, H. Hu, L. Shi, G. A. Mcclarty et al., Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation, Ann N Y Acad Sci, vol.187, pp.92-99, 1998.

T. P. Hatch, E. Al-hossainy, and J. A. Silverman, Adenine nucleotide and lysine transport in Chlamydia psittaci, J Bacteriol, vol.150, pp.662-670, 1982.

A. Matsumoto, Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci, J Bacteriol, vol.145, pp.605-612, 1981.

A. Matsumoto, H. Bessho, K. Uehira, and T. Suda, Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions, J Electron Microsc (Tokyo), vol.40, pp.356-363, 1991.

S. R. Chowdhury, A. Reimer, M. Sharan, V. Kozjak-pavlovic, A. Eulalio et al., Chlamydia preserves the mitochondrial network necessary for replication via microRNAdependent inhibition of fission, J Cell Biol, vol.216, pp.1071-1089, 2017.

J. Li, S. Donath, Y. Li, D. Qin, B. S. Prabhakar et al., miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway, CORRECTION PLoS Genet, vol.6, 2010.

P. Liang, M. Rosas-lemus, D. Patel, X. Fang, K. Tuz et al., Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: role of sodium-based energetics in chlamydial ATP generation, J Biol Chem, vol.293, pp.510-522, 2018.

N. Käding, I. Kaufhold, C. Müller, M. Szaszák, K. Shima et al., Growth of Chlamydia pneumoniae is enhanced in cells with impaired mitochondrial function, Front Cell Infect Microbiol, vol.7, 2017.

Y. Rikihisa, Molecular pathogenesis of Ehrlichia chaffeensis infection, Annu Rev Microbiol, vol.69, pp.283-304, 2015.

V. L. Popov, S. Chen, H. Feng, and D. H. Walker, Ultrastructural variation of cultured Ehrlichia chaffeensis, J Med Microbiol, vol.43, pp.411-421, 1995.

Y. Liu, Z. Zhang, Y. Jiang, L. Zhang, V. L. Popov et al., Obligate intracellular bacterium Ehrlichia inhibiting mitochondrial activity, Microbes Infect, vol.13, pp.232-238, 2011.

V. Ohlen, T. Luce-fedrow, A. Ortega, M. T. Ganta, R. R. Chapes et al., Identification of critical host mitochondrion-associated genes during Ehrlichia chaffeensis infections, Infect Immun, vol.80, pp.3576-3586, 2012.

H. Liu, W. Bao, M. Lin, H. Niu, and Y. Rikihisa, Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD, Cell Microbiol, vol.14, pp.1037-1050, 2012.

J. Z. Zhang, M. Sinha, B. A. Luxon, and X. J. Yu, Survival strategy of obligately intracellular Ehrlichia chaffeensis: novel modulation of immune response and host cell cycles, Infect Immun, vol.72, pp.498-507, 2004.

M. Khan, G. H. Syed, S. J. Kim, and A. Siddiqui, Mitochondrial dynamics and viral infections: a close nexus, Biochim Biophys Acta, p.1853, 2015.

B. Pt, J. H. Foo, J. G. Culvenor, R. L. Ferrero, T. Kwok et al., Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity, Cell Microbiol, vol.6, pp.792-798, 2004.

M. Suzuki, O. Danilchanka, and J. J. Mekalanos, Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases, Cell Host Microbe, vol.16, pp.581-591, 2014.

J. P. Nougayrède and M. S. Donnenberg, Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway, Cell Microbiol, vol.6, pp.1097-1111, 2004.

B. Kenny, M. Jepson, P. Papatheodorou, G. Doma?ska, M. Öxle et al., The enteropathogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/ Hsp70 system and alters organelle morphology, Cell Microbiol, vol.2, pp.677-689, 2000.

D. Sassera, T. Beninati, C. Bandi, E. Bouman, L. Sacchi et al., Candidatus Midichloria mitochondrii', an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle, Int J Syst Evol Microbiol, vol.56, pp.2238-2247, 2006.

E. V. Wyatt, K. Diaz, A. J. Griffin, J. A. Rassmussen, D. D. Crane et al., Metabolic reprogramming of host cells by virulent Francisella tularensis for optimal replication and modulation of inflammation, J Immunol, vol.196, pp.4227-4236, 2016.