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Abstract  
Collective cell migration does not only reflect the migration of cells at a similar speed and in the 
same direction, it also implies the emergence of new properties observed at the level of the cell 
group. This collective behaviour relies on interactions between the cells and the establishment 
of a hierarchy amongst cells with leaders driving the group of followers. Here we make the 
parallel between the front-to-rear polarity axis in single cell and the front-to-rear multicellular 
scale polarity of a migrating collective which established through exchange of biochemical and 
mechanical information from the front to the rear and vice versa. Such multicellular scale 
polarity gives the migrating group the possibility to better sense and adapt to energy, 
biochemical and mechanical constrains and facilitate migration over long distances in complex 
and possibly changing environments. 
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Introduction  

Collective cell migration is crucial for many physiological processes, from embryonic development 
to the adult where it participates for instance in wound healing and tissue renewal. Many 
pathologies have been linked with aberrant collective cell migration, cancer being a primary 
example [1-4]. Hence there is a need for a better understanding of the mechanisms controlling 
collective cell migration. During migration of single cells, the establishment of a front-to-rear 
polarity axis is crucial [5]. The protrusive front points to the direction of migration and is 
characterized by cytoskeleton-driven membrane protrusion. As the front protrudes, cell migration 
proceeds depending on the acto-myosin contractility which characterises the rest of the cell, 
including the cell rear. There, contractility also contributes to the detachment of cell adhesions to 
promote the translation of the cell. The formation of a front-to-rear axis is induced by polarity 
signalling which sees as major players the small GTPases proteins of the RHO family. Globally, at 
the front, CDC42 and RAC promote actin polymerisation and consequentially formation of 
protrusions such as filopodia or lamellipodia, whereas at the cell rear, Rho and other partners are 
controlling acto-contractility (For review see [6, 7]). In the case of directed migration, biochemical 
and mechanical extracellular cues initially induce polarity signalling and the formation of a front-
to-rear axis. When cells migrate in a persistent direction, several intracellular feedback loops 
involving for instance cytoskeletal organisation or membrane trafficking stabilise the front-to-rear 
polarity and migration direction.  

Collective migration includes the migration of cell monolayers, cell groups of various size 
and shape, connected chains of cells, or more loosely connected cell streams. Model organisms 
such as Xenopus laevis, Drosophila melanogaster and Zebrafish, among others, have been crucial 
for the study and characterisation of collectively migrating cells. In parallel, in vitro approaches 
have been extensively used to elucidate key concepts underlying the establishment and 
maintenance of collective directed movements. Over the years, these analyses have shown that 
collective migration does not only characterise cells that move together in a similar direction but 
also imply that these cells migrate in a more directed manner and sometimes faster than cells 
migrating individually in similar conditions [6]. This collective behaviour emerges from cell 
cooperation within the group, allowed by intercellular communication through cell-cell contacts or 
soluble factors. Our better understanding of the relationships within migrating cell groups have 
led to the notion that front-to-rear polarity observed in single cell may be extended to a migrating 
cell group. Such multicellular-scale polarity relies on the establishment of a hierarchy amongst 
migrating cells. A population of front cells emerges from the migrating collective to serve as 
leaders which initiate, direct and facilitate the migration of followers, thanks to signalling 
molecules and transmission of forces through cell-cell contacts [6, 8, 9]. Similar to intracellular 
signalling observed in single polarised cells, information is exchanged within the cell collective 
either directly or indirectly in order to influence the behaviour of neighbouring cells, including the 
leaders, at both mechanical and biochemical levels [10]. As a result, migrating cell clusters, chains 
and sheets form highly polarised multicellular structures via mechanical and biochemical feedback 
loops flowing from the front to the back and vice-versa. This collective front-to-rear polarity 
provides a support not only for the most efficient migration, but also leads to the emergence of 
new properties such as collective chemotaxis, or durotaxis. 

In this review, we first describe front-to-rear polarity within collectively migrating cell 
group. Subsequently, we focus on the latest advances showing how integration of polarity at a 
multicellular scale gives rise to the emerging properties of the cell collective, allowing them to 
sense and adapt to energical, biochemical and mechanical constrains.  
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Cell-cell interactions in multi-cellular scale polarization  

Cell-cell contacts tend to inhibit cell protrusion in a process called contact inhibition of 
locomotion (CIL), which plays a key role in the establishment of the front of migrating collectives 
[6, 11]. Upon cell-cell interaction, membrane proteins including for instance cadherins, ephrins 
and PCP proteins, induce CIL through intracellular signalling and mechanical coupling. Cells located 
at the edge of the group harbour a free cell edge fundamentally distinct from their other sides 
engaged in cell-cell interactions. The asymmetric distribution of homophilic cadherin-mediated 
contacts is sufficient to promote cell polarisation towards the edge of the cell group [12]. Such 
mechanism restricts CDC42 and RAC activity at the contact free edge of these cells, leads to their  
polarisation towards the front of the migrating sheet and identify them as leader cells directing 
the migration of the entire monolayer [13] (Figure 1). Additional signalling can further restrict the 
number of leader cells. In epithelial sheet only a subpopulation of front cells become leaders and 
form finger-like structure at the wound edge [14]. Once the migration of leaders is initiated, the 
formation of contractile actin cables connecting them to the adjacent cells prevents RAC mediated 
protrusion in neighbouring cells [15, 16]. The mechanical properties of the epithelial monolayer 
and the initial geometry of the front edge determine the distance between leader cells and 
thereby the size of the cell population following these leaders [16]. The size of the cell group 
following one leader depends on the length up to which forces can be transmitted [17].  

The situation is more complicated in case of cell clusters where in principle all cells located 
at the edge of the cluster could become leaders. During border cell migration in the Drosophila 
ovary, a cluster of eight cells delaminate from the epithelium and migrate collectively between 
nurse cells towards the oocyte. The collective movement is ensured by the expression of DE-
cadherin which mediates contact between the border cells and between border cells and nurse 
cells. Rab11 acts on the whole cluster to promote the formation of a coherent actin-moesin 
structure that surrounds the cluster and restrict RAC-dependent protrusive activity in the leading 
cell [18, 19] (Figure 1). Rab11-mediated recycling of CDC42 controls the mechanical coupling 
within the cell cluster promoting mediated cytoskeletal tension through adherens junctions 
between adjacent cells [20]. As border cells migration proceeds, increased EGF signalling disrupts 
the acto-myosin cable surrounding the cell cluster and abolish the restriction of Rac activity to 
promote protrusion in all cells of the clusters which can then exchange position [21].  

During mesenchymal migration of single cells, contraction between the protruding front 
and the retracting rear is mediated by ventral stress fibres that reach between focal adhesions 
located at the opposite sides of the cell (Figure 1). Cadherin-mediated contacts relay mechanical 
forces between the front and the rear of migrating groups (Figure 1). During migration of astrocyte 
or epithelial monolayer, most of the traction forces are exerted by the leaders with elevated RHOA 
activity, which pull on the followers [14, 22]. Mechanotransduction at cell-cell contacts and 
strengthening of adherens junctions at the front and rear of migrating cells can orient the actin 
cytoskeleton and mediate propagation of tension across the monolayer [9]. Vishwakarma et al. 
suggests a prominent role of forces generated by follower epithelial cells to induce and maintain 
leaders. Followers are pulling on the edge and by doing so they facilitate polarisation and 
protrusions formation in leaders [17]. P-cadherin mediated cell-cell contacts in myoblasts promote 
the concentration of CDC42 at the front edge of leaders and followers and homogenizes the cell 
polarity axis throughout the monolayer [23]. In migrating endothelial monolayers, VE-cadherin-
mediated adherens junctions at the rear of leader cell form protrusive fingers which penetrate the 
front of the following cells and triggers Rac-driven membrane protrusions [24]. The front-to-rear 
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polarity of the leaders can thus propagate to followers and contribute to the global polarisation of 
migrating groups.  

In addition to controlling multicellular scale cytoskeletal structures, many molecules 
involved in cell-cell interactions can recruit polarity complexes to the adhesion sites [11]. The 
polarised distribution of planar polarity proteins such as receptor protein tyrosine phosphatase Lar 
at the cell front and the cadherin Fat at the cell rear have recently been shown to sustain polarity 
signalling between neighbouring cells of the follicular epithelium in the Drosphila egg chamber 
[25, 26]. In this model system, the planar polarisation of the semaphorin, Sema-5c also contributes 
to the global polarisation of the epithelium. At the leading edge of each cell, the activity of Lar is 
antagonized mechanism which involves the semaphorin, Sema-5c accumulates at the leading edge 
of each cell and signal through its receptor Plexin A to suppress protrusions in the cell ahead. It 
also antagonize Lar activity independently of Plexin A [27]. These recent observations illustrate 
how collective front-to-rear polarity is reinforced by multiple bi-directional polarity signalling at 
cell-cell interfaces (Figure 1). 
 

Collective polarization and energy sensing  

While in migrating monolayers of astrocytes or epithelial cells leaders are maintained at 
the front edge for a long period of time, in other systems exchanges between leaders and 
followers can occur. During migration of cranial neural crests (NCs) in Xenopus, chick and Zebrafish 
embryos, leader cells appear interchangeable. In this case, ablation of leaders does not totally 
bock migration, suggesting a rapid adaptation of followers to the formation of a free edge, 
generating an asymmetry in cadherin-mediated junctions [28].  

During leukocyte single cell migration, the cell front samples the geometry of the migratory 
path and choose the path of least resistance, suggesting that the cell energy level is critical in 
migration [29]. Recent work from Reinhart-King`s group revealed the influence of cell energetic 
status in the dynamic polarity of migrating collective [30]. During breast cancer cell invasion, 
leader cells were shown to require more energy than followers, probably because they are 
responsible for a large part of the pushing and pulling forces required for migration through the 
extracellular matrix. Leader cells are thought to remodel the extracellular matrix and the 
formation of micro tracks for the less invasive follower cells [4, 31]. As collective migration 
progresses, the energy level of the leader cell decreases until it reaches a threshold level under 
which leaders cannot invade efficiently (Figure 2). Leader cells are then replaced by followers 
which become leaders. When put into a challenging environment, for example a denser collagen 
matrix, leaders’ lifetime decreases, suggesting that the leaders-followers switch may be a 
collective strategy to sustain continued invasion [30]. Cancer cells may have a limited amount of 
energy to spend and thus exchange between leaders and followers occurs more rapidly. How the 
bioenergetic status of leaders controls the emergence of new leaders to overtake the failing 
leaders at the front remain unclear. Cadherin-mediated interaction may serve as sensors of the 
strength developed by leaders and thereby indicate to the followers when tractions forces are 
decreasing. 

Collective polarization and chemotaxis  

Extracellular biochemical cues that control single cell directed migration also contribute to 
collective migration [15, 16, 32, 33] (Figure 3A). During development, collective chemotaxis must 
occur over long distance during long period of time in a morphologically changing and growing 
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embryo. In such context the maintenance of a steep enough chemokine gradient that could be 
sufficient to drive the cell group by influencing the direction and migration of each individual cell 
seems unlikely. Converging evidence indicate that the polarisation of the migrating cell groups 
facilitate long-distance chemotaxis (Figure 3A).  

One simple mechanism is that leader cells are initially defined by a specific set of receptors 
which render them more susceptible to chemokine gradient. This is the case during border cells 
migration which is initiated by the secretion of specific signals produced by the oocytes (PVF 
(PDGF- and VEGF-related factor 1) and EGF [34]. The cell expressing the higher level of the 
receptor tyrosine kinase PVR shows a higher Rac activation and takes the role of leader driving the 
migration of the whole cluster [1, 35, 36]. Similarly a small population of cranial NCC present a 
specific transcriptomic signature which allows them to respond to a VEGF gradient and serve as 
leaders. In turn VEGF stimulation induces a change in gene expression reinforcing the leader cell 
phenotype [37]. Interestingly followers respond to ectopic expression of VEGF by adjusting their 
migratory path and their gene expression to become more “leader-like”.  

An emergent property of migrating collective is the self-generation of chemokine gradient, 
allowing the group to migrate in an initially homogenous medium. In the case of NCCs, computer 
modelling considering VEGF diffusion and uptake and assuming homogenous VEGF production 
showed that VEGF is progressively consumed by the cells at the front, creating a gradient of VEGF 
between the front and the rear of the cell group which is likely to improve the chemotactic 
behaviour [38]. The zebrafish lateral line primordium follows a path marked by a constant 
concentration of SDF1 (Stromal cell-derived factor 1) from the front to the rear of the lateral side 
of the animal. Front cells serving as leaders express the CXCR4, which upon SDF1 binding triggers 
migration. In contrast, followers situated in the second half of the primordium express a 
combination of CXCR4 and CXCR7. CXCR7 interacts with SDF1 without promoting migratory signals 
and sequesters the chemoattractant away from CXCR4, thereby generating a gradient of CXCR4 
signalling between the front and the rear of the primordium [39, 40]. The self-generation of 
chemoattractant gradient is also used by melanoma cells [41, 42]. Melanoma cells placed in a 
medium containing LPA start to migrate after locally breaking down LPA using the lipid 
phosphatase 3 (LPP3) and creating a substantial outward-facing LPA gradient [41, 42]. This 
phenomenon is facilitated by high cell density, which increases LPA hydrolysis. This idea is in line 
with the fact that the “Breslow thickness”, which gives an indication of the tumour cell density, is 
the most significant factor of poor prognosis for melanoma [43].  
 

Collective polarization and mechanosensing 

Both mechanical (substrate rigidity) and geometrical (confinement) characteristics of the 
cell environment influence the polarisation, the motility and the collective behaviour of migrating 
collectives.  

Single cells can sense and follow gradient of ECM rigidity in a process called durotaxis 
(Figure 3B). Migrating collective can also undergo durotaxis, but the process appears much more 
efficient as it can be triggered in conditions where single cells are unable to durotax [44] . Making 
a parallel with what is observed during single cell durotaxis, it has been proposed that the control 
at the multicellular scale of the dynamics of cell-ECM adhesion via the focal adhesion molecular 
clutch, may explain the collective durotaxis [45] (Figure 3B). Transmission of acto-myosin forces 
across the cell monolayer via cell-cell junctions is essential [44], and may lead to an increased 
sensitivity to shallow rigidity gradient by integrating focal adhesion mechanical responses through 
a wider distance. While not analysed in this study, contribution of cell-cell contacts in the 
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generation of cell polarity signalling is likely to play a key role. Although durotaxis in vivo has not 
been described, a beautiful example showing the importance of substrate stiffness in vivo, was 
described by Barriga et al. where they found that NCC in the Xenopus embryo undergo collective 
migration in response to a physiological change in the mesoderm stiffness underneath them. In 
this case only via establishing and maintaining cell-cell contacts, the cluster is able to keep 
directionality [46]. 

As single cell migration is influenced by the confinement which controls cell adhesion and 
spreading [47], force generation and speed of migration, the motile behaviour of confluent 
epithelial cells are influenced by confinement of the cell monolayer. When plated in domains of 
limited size epithelial monolayers exhibit collective pulsations as persistent random walkers adapt 
their motion to that of their neighbours. These results demonstrate that epithelial confinement 
alone can induce spontaneous collective motility and morphogenesis-like processes [48]. The 
amplitude and period of collective oscillatory motion of the confined epithelial sheets are dictated 
by the smallest confinement dimension [49]. At the single cell level the actin flow acts as a sensor 
of the cell edge curvature to influence migration at the single cell level [50]. It is tempting to 
speculate that cytoskeletal connection between cells of large cohorts may be used to sense 
mechanical information on a larger scale and adapt collective migration to the geometry of the 
environment. Accordingly cell-cell junctions transmit the forces and adapt polarity signalling to 
generate the collective behaviour observed in confined environment [49]. 

MDCK cells migrating in strips with a smaller width display an increased speed of migration, 
pointing to the hypothesis that a geometrical constraint would reduce the uncertainty of the 
leader cells and provide more directionality to the cluster [51]. Szabò et al. showed the 
importance of confinement during in vivo migration of NCCs in Xenopus embryos and identified 
the proteoglycan versican as confining molecule which acts as non-permissive substrate for the 
NCCs migration [52]. Chemotaxis alone cannot compensate for the lack of versican-induced 
confinement. More recently Semaphorin 3A was also shown to induce cephalic NC confinement by 
reducing cell adhesion to the extracellular matrix and Rac-dependent protrusive activity and 
thereby preventing SDF1-induced migration [53]. 

 

Conclusions and perspectives 

Collective migration relies on the polarisation of the migrating cell group. Similarly to a single 
migrating cells, the front of a migrating collective points to the direction of migration and generate 
most of the forces necessary for the forward motion, while the rear is devoid of stable protrusive 
activity and instead often display a contractile periphery. Not only the polarity and the 
cytoskeletal organisation but also the energy level are coordinated at the multicellular. The 
collective behaviour appears to be mainly insured by cell-cell interactions and accumulating 
evidence point to the crucial role of direct cell-cell contacts and in particular of cadherin mediated 
adherens junctions. Cell-cell interactions insure the cohesion of migrating cell groups and they also 
contribute to the identification of leader cells at the front. Moreover they serve as mechanical 
bridges that transmit forces between the front and the rear of the cell collective and also as 
signalling relays which transduce polarity signalling. It is however likely that other structures 
involved in cell-cell communication, such as gap junctions, are involved. Biochemical and 
mechanical coordination between cells allows the cell group to sense chemokine gradient, rigidity 
gradient, geometry of the environment at a multicellular scale. In complex in vivo environment, 
the interplay between contact inhibition of locomotion (CIL) and chemotaxis, or chemotaxis and 
ECM-cell interactions may also trigger more efficient collective migration. For instance, in human 
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hepatocarcinoma cells, cell-cell junctions trigger an increased level of chemokine receptors at the 
plasma membrane which promotes migration [54]. Furthermore, mathematical simulations have 
suggested that several chemoattractants must act together to define complex and long 
trajectories. For instance, three chemoattractants are needed to position the trunk NCC into the 
SG and the DRG [55]. Whether migrating collectives are better at integrating the effects of a large 
number of factors will need to be investigated. 
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Figure legends 

Figure 1: Front-to-rear polarity in single and collectively migrating cells. This figure illustrates that 
a parallel can be drawn between the front-to-rear polarity of single migrating cells in which the 
leading edge is characterized by a higher RAC/CDC42 activity at the front and the inhibition of Rac-
mediated protrusion on the lateral and rear sides of the cell (A) and what is observed in migrating 
collectives such as epithelial monolayers (B) or Drosophila border cells (C). In case of collective 
migration, cell-cell contacts between cells organize the actin cytoskeleton to transmit forces from 
the front to the rear and limit lateral or rear protrusions. They also contribute to feedback 
mechanisms improving front-to-rear polarity of the cell group. 
 
Figure 2: Energy levels affect front-to-rear polarity in collectively migrating cells. 
During collective migration in a 3D complex environment, leader cells use more energy than the 
followers to create the migration path and facilitate the migration of followers. When the energy 
level of the leaders becomes too low to achieve these tasks, a follower with a higher energy level 
takes over. The overall front-to-rear polarity and the high speed of migration can thus be 
maintained. 
 
Figure 3: Similarities between single cell and collective chemotaxis and durotaxis. 
Cell groups like single cells can polarize in response to biochemical (chemotaxis, A) and rigidity 
(durotaxis, B) gradients present in the microenvironment. Large cell groups are able to sense and 
respond to more shallow gradients. Moreover, once polarized cell groups can generate their own 
chemical gradient, as well as an mechanical easier migratory path. The multi-cellular scale 
polarization thus allows migrating collective to undergo a more directed migration. 
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