B. Adolf, P. Chapouton, C. S. Lam, S. Topp, B. Tannhä-user et al., Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon, Dev. Biol, vol.295, pp.278-293, 2006.

A. Alunni, M. Krecsmarik, A. Bosco, S. Galant, L. Pan et al., Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium, Development, vol.140, pp.3335-3347, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850724

J. Andersen, N. Urbá-n, A. Achimastou, A. Ito, M. Simic et al., A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells, Neuron, vol.83, pp.1085-1097, 2014.

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, pp.215-233, 2009.

M. Benhamed, U. Herbig, T. Ye, A. Dejean, and O. Bischof, Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells, Nat. Cell Biol, vol.14, pp.266-275, 2012.

R. L. Bernardos, R. , and P. A. , GFAP transgenic zebrafish, Gene Expr. Patterns, vol.6, pp.1007-1013, 2006.

B. Bonev, A. Pisco, and N. Papalopulu, MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis, Dev. Cell, vol.20, pp.19-32, 2011.

B. Bonev, P. Stanley, and N. Papalopulu, MicroRNA-9 modulates Hes1 ultradian oscillations by forming a double-negative feedback loop, Cell Rep, vol.2, pp.10-18, 2012.

S. E. Castel and R. A. Martienssen, RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond, Nat. Rev. Genet, vol.14, pp.100-112, 2013.

P. Chapouton, B. Adolf, C. Leucht, B. Tannhä-user, S. Ryu et al., , 2006.

P. Chapouton, P. Skupien, B. Hesl, M. Coolen, J. C. Moore et al.,

T. H. Cheung and T. A. Rando, Molecular regulation of stem cell quiescence, Nat. Rev. Mol. Cell Biol, vol.14, pp.329-340, 2013.

T. H. Cheung, N. L. Quach, G. W. Charville, L. Liu, L. Park et al., Maintenance of muscle stem-cell quiescence by microRNA-489, Nature, vol.482, pp.524-528, 2012.

R. A. Clark, M. Shoaib, K. N. Hewitt, S. C. Stanford, and S. T. Bate, , 2012.

, A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments, J. Psychopharmacol. (Oxford), vol.26, pp.1136-1142

P. Codega, V. Silva-vargas, A. Paul, A. R. Maldonado-soto, A. M. Deleo et al., Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche, Neuron, vol.82, pp.545-559, 2014.

M. Coolen, D. Thieffry, Ø. Drivenes, T. S. Becker, and L. Bally-cuif, , 2012.

, miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors, Dev. Cell, vol.22, pp.1052-1064

M. Coolen, S. Katz, and L. Bally-cuif, miR-9: a versatile regulator of neurogenesis, Front. Cell. Neurosci, vol.7, p.220, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920005

C. G. Crist, D. Montarras, and M. Buckingham, , 2012.

L. Dirian, S. Galant, M. Coolen, W. Chen, S. Bedu et al., Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells, Dev. Cell, vol.30, pp.123-136, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01054814

J. M. Encinas, T. V. Michurina, N. Peunova, J. Park, J. Tordo et al., Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus, Cell Stem Cell, vol.8, pp.566-579, 2011.

A. Eulalio, E. Huntzinger, and E. Izaurralde, GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay, Nat. Struct. Mol. Biol, vol.15, pp.346-353, 2008.

O. Flores, E. M. Kennedy, R. L. Skalsky, and B. R. Cullen, Differential RISC association of endogenous human microRNAs predicts their inhibitory potential, Nucleic Acids Res, vol.42, pp.4629-4639, 2014.

K. T. Gagnon, L. Li, Y. Chu, B. A. Janowski, and D. R. Corey, RNAi factors are present and active in human cell nuclei, Cell Rep, vol.6, pp.211-221, 2014.

J. Ganz, J. Kaslin, S. Hochmann, D. Freudenreich, and M. Brand, , 2010.

, Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon, Glia, vol.58, pp.1345-1363

C. Giachino, T. , and V. , Notching up neural stem cell homogeneity in homeostasis and disease, Front. Neurosci, vol.8, p.32, 2014.

H. Grandel, J. Kaslin, J. Ganz, I. Wenzel, and M. Brand, Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate, Dev. Biol, vol.295, pp.263-277, 2006.

J. Hsieh, Orchestrating transcriptional control of adult neurogenesis, 2012.

, Genes Dev, vol.26, pp.1010-1021

C. Kizil and M. Brand, Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells, PLoS ONE, vol.6, 2011.

C. Kizil, N. Kyritsis, S. Dudczig, V. Kroehne, D. Freudenreich et al., Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3, Dev. Cell, vol.23, pp.1230-1237, 2012.

W. P. Kloosterman, A. K. Lagendijk, R. F. Ketting, J. D. Moulton, and R. H. Plasterk, Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development, PLoS Biol, vol.5, p.203, 2007.

V. Kroehne, D. Freudenreich, S. Hans, J. Kaslin, and M. Brand, Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors, Development, vol.138, pp.4831-4841, 2011.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin et al., Acute inflammation initiates the regenerative response in the adult zebrafish brain, Science, vol.338, pp.1353-1356, 2012.

C. Leucht, C. Stigloher, A. Wizenmann, R. Klafke, A. Folchert et al., MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary, Nat. Neurosci, vol.11, pp.641-648, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01055284

D. A. Lim and A. Alvarez-buylla, Adult neural stem cells stake their ground, Trends Neurosci, vol.37, pp.563-571, 2014.

J. Lu and A. Tsourkas, Imaging individual microRNAs in single mammalian cells in situ, Nucleic Acids Res, vol.37, p.100, 2009.

S. Lugert, O. Basak, P. Knuckles, U. Haussler, K. Fabel et al., , 2010.

B. Martynoga, J. L. Mateo, B. Zhou, J. Andersen, A. Achimastou et al., , 2013.

, Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence, Genes Dev, vol.27, pp.1769-1786

M. Mä-rz, P. Chapouton, N. Diotel, C. Vaillant, B. Hesl et al., Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon, Glia, vol.58, pp.870-888, 2010.

M. Matsui, L. Li, B. A. Janowski, and D. R. Corey, Reduced expression of Argonaute 1, Argonaute 2, and TRBP changes levels and intracellular distribution of RNAi factors, Sci. Rep, vol.5, p.12855, 2015.

G. Meister, Argonaute proteins: functional insights and emerging roles, Nat. Rev. Genet, vol.14, pp.447-459, 2013.

G. L. Ming and H. Song, Adult neurogenesis in the mammalian brain: significant answers and significant questions, Neuron, vol.70, pp.687-702, 2011.

H. Mira, Z. Andreu, H. Suh, D. C. Lie, S. Jessberger et al., , 2010.

, Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus, Cell Stem Cell, vol.7, pp.78-89

D. M. Muñ-oz, S. Singh, T. Tung, S. Agnihotri, A. Nagy et al., Differential transformation capacity of neuro-glial progenitors during development, Proc. Natl. Acad. Sci. USA, vol.110, pp.14378-14383, 2013.

J. Nam, O. S. Rissland, D. Koppstein, C. Abreu-goodger, C. H. Jan et al., Global analyses of the effect of different cellular contexts on microRNA targeting, Mol. Cell, vol.53, pp.1031-1043, 2014.

P. T. Nelson, M. De-planell-saguer, S. Lamprinaki, M. Kiriakidou, P. Zhang et al., A novel monoclonal antibody against human Argonaute proteins reveals unexpected characteristics of miRNAs in human blood cells, RNA, vol.13, pp.1787-1792, 2007.

K. Nishi, A. Nishi, T. Nagasawa, and K. Ui-tei, Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus, RNA, vol.19, pp.17-35, 2013.

K. Nishi, T. Takahashi, M. Suzawa, T. Miyakawa, T. Nagasawa et al., Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein, Nucleic Acids Res, vol.43, pp.9856-9873, 2015.

S. H. Olejniczak, G. La-rocca, J. J. Gruber, and C. B. Thompson, , 2013.

, Long-lived microRNA-Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses, Proc. Natl. Acad. Sci. USA, vol.110, pp.157-162

M. W. Pfaffl, G. W. Horgan, and L. Dempfle, Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res, vol.30, p.36, 2002.

O. S. Rissland, S. Hong, and D. P. Bartel, MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes, Mol. Cell, vol.43, pp.993-1004, 2011.

I. Rothenaigner, M. Krecsmarik, J. A. Hayes, B. Bahn, A. Lepier et al., Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate, Development, vol.138, pp.1459-1469, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00585364

T. Sato, T. Yamamoto, and A. Sehara-fujisawa, induce postnatal quiescence of skeletal muscle stem cells, Nat. Commun, vol.5, p.4597, 2014.

D. Schraivogel and G. Meister, Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins, Trends Biochem. Sci, vol.39, pp.420-431, 2014.

D. Schraivogel, S. G. Schindler, J. Danner, E. Kremmer, J. Pfaff et al., Importin-b facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels, Nucleic Acids Res, vol.43, pp.7447-7461, 2015.

M. Shibata, D. Kurokawa, H. Nakao, T. Ohmura, A. et al., , 2008.

, MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium, J. Neurosci, vol.28, pp.10415-10421

M. Shibata, H. Nakao, H. Kiyonari, T. Abe, A. et al., , 2011.

, MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors, J. Neurosci, vol.31, pp.3407-3422

M. J. Søe, T. Møller, M. Dufva, and K. Holmstrøm, A sensitive alternative for microRNA in situ hybridizations using probes of 2 0 -O-methyl RNA + LNA, J. Histochem. Cytochem, vol.59, pp.661-672, 2011.

, Cell Reports, vol.17, p.1397, 2016.

H. Suh, A. Consiglio, J. Ray, T. Sawai, K. A. D'amour et al., , 2007.

, In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus, Cell Stem Cell, vol.1, pp.515-528

C. Takke, P. Dornseifer, E. Weizsacker, and J. A. Campos-ortega, , 1999.

, her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling, Development, vol.126, pp.1811-1821

E. Than-trong and L. Bally-cuif, Radial glia and neural progenitors in the adult zebrafish central nervous system, Glia, vol.63, pp.1406-1428, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01156471

N. Urbá-n and F. Guillemot, Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front, Cell. Neurosci, vol.8, p.396, 2014.

D. Wang, Z. Zhang, E. O'loughlin, L. Wang, X. Fan et al., MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway, Nat. Cell Biol, vol.15, pp.1153-1163, 2013.

E. Wienholds, W. P. Kloosterman, E. Miska, E. Alvarez-saavedra, E. Berezikov et al., , 2005.

, MicroRNA expression in zebrafish embryonic development, Science, vol.309, pp.310-311

C. Zhao, G. Sun, S. Li, and Y. Shi, A feedback regulatory loop, 2009.

. Kwan, 2007) using EcoRI and XhoI restriction sites. The dn-tnrc6-gfp fusion gene was then placed downstream of the previously identified her4 promoter (Yeo et al., 2007) or CMV/SP6 (for mRNA synthesis) by performing a gateway LR reaction (Invitrogen) using the p5E-her4, p5E-CMV/SP6 (Tol2kit), pME-eGFP-dn-tnrc6, p3E-polyA (Tol2kit) and pDest-Tol2pA2 (Tol2kit) entry vectors. The full length zebrafish ago2 was amplified from adult brains cDNAs using the Phusion High Fidelity PCR kit (Thermo Scientific). The PCR fragment was cloned into the pCS2+Flag plasmid, The fragment encoding the highly conserved zebrafish tnrc6a GW-I/II was amplified from adult brains cDNAs using the Expand High Fidelity PCR system (Roche). The PCR fragment was cloned into the pME-eGFP no stop vector of the Tol2kit

. Leucht, Embryos were injected with mRNA encoding mCherry and harboring 10 bulged binding sites for miR-9 (miR-9 sensor) or 10 bulged binding sites for miR-218 (control sensor) in their 3'UTR (50ng/µL), with or without miR-9 duplexes (10µM), as previously described, 2008.

. Leucht, To prepare lysates from adult telencephali, brains were dissected on ice in the presence of protease inhibitors (Roche) and the telencephali were snap frozen in liquid nitrogen and homogenized in RIPA buffer. Protein lysates were diluted 1:1 in Laemmli buffer (Biorad) supplemented with ?-mercaptoethanol and heated for 5 min at 95°C. For Western blots from AH-NSCs samples, cells were collected (1.2 million proliferating and 400,000 quiescent AH-NSCs per sample), boiled at 95°C for 5 min in SDS buffer and subsequently sonicated. To calibrate to cellular input, proliferating and quiescent cell lysates were diluted to a ratio of 1:3 prior to loading. Samples and the Kaleidoscope prestained ladder (Biorad) were loaded into mini-protean TGX precast gels (Biorad) and migrated for 40 min. at 200V in 10x Tris/Glycine/SDS buffer (Biorad). Gels were blotted onto an Invitrolon PVDF membrane (Life Technologies) at 15V for 30-60 min. Membranes were blocked in 5% non-fat dry milk, Capped mRNAs of the different constructs were synthetized using mMessage mMachine kit (Ambion) and injected in one-cell stage embryos (50ng/µL). Injected embryos were dechorionated and deyolked at 24hpf in ice-cold embryo medium supplemented with proteases inhibitors (Roche) and samples were homogeneized in ice-cold lysis buffer (10mM Tris pH 7.5, 150mM NaCl, 0.5mM EDTA, 0.5% NP-40, protease inhibitors), 2008.

, Cellular Fractionation of proteins and RNAs The separation and preparation of cytoplasmic, membrane, nuclear soluble, chromatin-bound and cytoskeletal protein extracts was performed with the Subcellular Protein Fractionation Kit for tissues (Thermo Scientific, #87790) according to manufacturer's instructions, starting from 40 adult telencephali (~200mg of tissue) dissected in sterile ice cold PBS. Cytoplasmic and nuclear tissue fractionation and RNA purification was carried out using the Cytoplasmic and Nuclear RNA purification Kit (Norgen Biotek Corp., #37400) according to manufacturer's instructions using either 6 adult telencephali per sample or 4 juvenile (1 month old) whole brains per sample. RT-PCR for gapdh and U2 was performed to verify the purity of the cytoplasmic and nuclear fractions using 18ng total RNA input and using the following reagents: Superscript II kit (Invitrogen) with Random Hexamer Primers

K. M. Kwan, E. Fujimoto, C. Grabher, B. D. Mangum, M. E. Hardy et al., The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs, Dev. Dyn, vol.236, pp.3088-3099, 2007.

E. Lamar, G. Deblandre, D. Wettstein, V. Gawantka, N. Pollet et al., Nrarp is a novel intracellular component of the Notch signaling pathway, Genes Dev, vol.15, pp.1885-1899, 2001.

B. Neave, A. Rodaway, S. W. Wilson, R. Patient, and N. Holder, Expression of zebrafish GATA 3 (gta3) during gastrulation and neurulation suggests a role in the specification of cell fate, Mechanisms of Development, vol.51, pp.169-182, 1995.

C. Nepal, M. Coolen, Y. Hadzhiev, D. Cussigh, P. Mydel et al., Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs, Nucleic Acids Res, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01304099

S. Ryu, J. Holzschuh, S. Erhardt, A. Ettl, and W. Driever, Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.18467-18472, 2005.

J. Westin and M. Lardelli, Three novel Notch genes in zebrafish: implications for vertebrate Notch gene evolution and function, Dev Gene Evol, vol.207, pp.51-63, 1997.