D. Alpizar-rodriguez, T. R. Lesker, A. Gronow, B. Gilbert, E. Raemy et al., Prevotella copri in individuals at risk for rheumatoid arthritis, Ann. Rheum. Dis, vol.78, pp.590-593, 2019.

D. An, S. F. Oh, T. Olszak, J. F. Neves, F. Y. Avci et al., , 2014.

M. C. Anderson, P. Vonaesch, A. Saffarian, B. S. Marteyn, and P. J. Sansonetti, Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy, Cell Host Microbe, vol.21, pp.769-776, 2017.

C. Archambaud, M. A. Nahori, G. Soubigou, C. Bé-cavin, L. Laval et al., Impact of lactobacilli on orally acquired listeriosis, Proc. Natl. Acad. Sci. USA, vol.109, pp.16684-16689, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01003361

C. Archambaud, O. Sismeiro, J. Toedling, G. Soubigou, C. Bé-cavin et al., , 2013.

, Confocal microscopy analysis of microbiota localization in colon of GF C57BL/6J mice colonized with Pc, Bt or Ps for 2 weeks and inoculated with Lm WT or Dlmo2776 bacteria. Muc2 (green), actin (purple), bacteria (red), and DNA (blue)

, Distances of closest bacteria to intestinal cells per condition over 5 high-powered fields per mouse, with each dot representing a measurement

, each dot represents one mouse. Statistically significant differences were evaluated by the Mann-Whitney test (A, B), one way-ANOVA test (E, G) or two-tailed unpaired Student's t test, Model depicting the effect of Prevotella on Lm infection. In (A), (B), and (E)

M. Arnaud, A. Chastanet, and M. Dé-barbouillé, New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria, Appl. Environ. Microbiol, vol.70, pp.6887-6891, 2004.

M. Arumugam, J. Raes, E. Pelletier, D. Le-paslier, T. Yamada et al., Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

D. Balestrino, M. A. Hamon, L. Dortet, M. A. Nahori, J. Pizarro-cerda et al., Singlecell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes, Appl. Environ. Microbiol, vol.76, pp.3625-3636, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01901824

A. J. B?-aumler and V. Sperandio, Interactions between the microbiota and pathogenic bacteria in the gut, Nature, vol.535, pp.85-93, 2016.

S. Becattini, E. R. Littmann, R. A. Carter, S. G. Kim, S. M. Morjaria et al., , 2017.

, Commensal microbes provide first line defense against Listeria monocytogenes infection, J. Exp. Med, vol.214, pp.1973-1989

A. M. Briselden, B. J. Moncla, C. E. Stevens, and S. L. Hillier, Sialidases (neuraminidases) in bacterial vaginosis and bacterial vaginosis-associated microflora, J. Clin. Microbiol, vol.30, pp.663-666, 1992.

S. Brugiroux, M. Beutler, C. Pfann, D. Garzetti, H. J. Ruscheweyh et al., , 2016.

, Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium, Nat. Microbiol, vol.2, p.16215

C. G. Buffie and E. G. Pamer, Microbiota-mediated colonization resistance against intestinal pathogens, Nat. Rev. Immunol, vol.13, pp.790-801, 2013.

J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-lyons, J. Huntley et al., Ultrahigh-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, ISME J, vol.6, pp.1621-1624, 2012.

B. Chassaing, G. Srinivasan, M. A. Delgado, A. N. Young, A. T. Gewirtz et al., Fecal lipocalin 2, a sensitive and broadly dynamic noninvasive biomarker for intestinal inflammation, PLoS One, vol.7, p.44328, 2012.

B. Chassaing, O. Koren, J. K. Goodrich, A. C. Poole, S. Srinivasan et al., Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature, vol.519, pp.92-96, 2015.

B. Chassaing, T. Van-de-wiele, J. De-bodt, M. Marzorati, and A. T. Gewirtz, Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation, Gut, vol.66, pp.1414-1427, 2017.

M. M. Curtis, Z. Hu, C. Klimko, S. Narayanan, R. Deberardinis et al., The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape, Cell Host Microbe, vol.16, pp.759-769, 2014.

F. De-filippis, E. Pasolli, A. Tett, S. Tarallo, A. Naccarati et al., , 2019.

, Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets, Cell Host Microbe, vol.25, pp.444-453

R. De-weirdt, S. Possemiers, G. Vermeulen, T. C. Moerdijk-poortvliet, H. T. Boschker et al., Human faecal microbiota display variable patterns of glycerol metabolism, FEMS Microbiol. Ecol, vol.74, pp.601-611, 2010.

M. S. Desai, A. M. Seekatz, N. M. Koropatkin, N. Kamada, C. A. Hickey et al., , 2016.

, A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility, Cell, vol.167, pp.1339-1353

M. Desvaux, E. Dumas, I. Chafsey, C. Chambon, and M. Hé-braud, Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics, J. Proteome Res, vol.9, pp.5076-5092, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964252

S. M. Dillon, E. J. Lee, C. V. Kotter, G. L. Austin, S. Gianella et al., Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection, Mucosal Immunol, vol.9, pp.24-37, 2016.

D. C. Edman, M. B. Pollock, and E. R. Hall, Listeria monocytogenes L forms. I. Induction maintenance, and biological characteristics, J. Bacteriol, vol.96, pp.352-357, 1968.

E. Elinav, T. Strowig, A. L. Kau, J. Henao-mejia, C. A. Thaiss et al., NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis, vol.145, pp.745-757, 2011.

J. A. Ferreyra, K. J. Wu, A. J. Hryckowian, D. M. Bouley, B. C. Weimer et al., Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance, Cell Host Microbe, vol.16, pp.770-777, 2014.

H. J. Flint and S. H. Duncan, Bacteroides and Prevotella, Encyclopedia of Food Microbiology, pp.203-208, 2014.

V. Gaboriau-routhiau, S. Rakotobe, E. Lé-cuyer, I. Mulder, A. Lan et al., The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses, Immunity, vol.31, pp.677-689, 2009.

B. P. Ganesh, R. Klopfleisch, G. Loh, and M. Blaut, Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice, PLoS One, vol.8, p.74963, 2013.

A. Geirnaert, J. Wang, M. Tinck, A. Steyaert, P. Van-den-abbeele et al., , 2015.

, Interindividual differences in response to treatment with butyrate-producing Butyricicoccus pullicaecorum 25-3T studied in an in vitro gut model, FEMS Microbiol. Ecol, vol.91, p.54

J. A. Gilbert, F. Meyer, J. Jansson, J. Gordon, N. Pace et al., The Earth Microbiome Project: Meeting report of the ''1 EMP meeting on sample selection and acquisition'' at Argonne National Laboratory, Stand. Genomic Sci, vol.3, pp.249-253, 2010.

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend et al., , 2001.

, Comparative genomics of Listeria species, Science, vol.294, pp.849-852

V. K. Gupta, N. M. Chaudhari, S. Iskepalli, and C. Dutta, Divergences in gene repertoire among the reference Prevotella genomes derived from distinct body sites of human, BMC Genomics, vol.16, p.153, 2015.

S. Herp, S. Brugiroux, D. Garzetti, D. Ring, L. M. Jochum et al., Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis, Cell Host Microbe, vol.25, pp.681-694, 2019.

F. Hildebrand, T. L. Nguyen, B. Brinkman, R. G. Yunta, B. Cauwe et al., Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice, Genome Biol, vol.14, p.4, 2013.

H. A. Hong, R. Khaneja, N. M. Tam, A. Cazzato, S. Tan et al., Bacillus subtilis isolated from the human gastrointestinal tract, Res. Microbiol, vol.160, pp.134-143, 2009.

I. I. Ivanov, K. Atarashi, N. Manel, E. L. Brodie, T. Shima et al., Induction of intestinal Th17 cells by segmented filamentous bacteria, Cell, vol.139, pp.485-498, 2009.

M. E. Johansson and G. C. Hansson, Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH, Methods Mol. Biol, vol.842, pp.229-235, 2012.

M. E. Johansson, M. Phillipson, J. Petersson, A. Velcich, L. Holm et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, Proc. Natl. Acad. Sci. USA 105, pp.15064-15069, 2008.

K. A. Jolley and M. C. Maiden, BIGSdb: Scalable analysis of bacterial genome variation at the population level, BMC Bioinformatics, vol.11, p.595, 2010.

U. S. Kaur, A. Shet, N. Rajnala, B. P. Gopalan, P. Moar et al., High Abundance of genus Prevotella, 2018.

C. A. Lozupone, M. E. Rhodes, C. P. Neff, A. P. Fontenot, T. B. Campbell et al., HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy, Gut Microbes, vol.5, pp.562-570, 2014.

G. B. Mackanes, The Immunological Basis of Acquired Cellular Resistance, J. Exp. Med, vol.120, pp.105-120, 1964.

Y. Maeda, T. Kurakawa, E. Umemoto, D. Motooka, Y. Ito et al., Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine, Arthritis Rheumatol, vol.68, pp.2646-2661, 2016.

B. Martínez, J. E. Suá-rez, and A. Rodríguez, Lactococcin 972 : a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane, Microbiology, vol.142, pp.2393-2398, 1996.

M. M. Maury, Y. H. Tsai, C. Charlier, M. Touchon, V. Chenal-francisque et al.,

, Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity, Nat. Genet, vol.48, pp.308-313

S. K. Mazmanian, C. H. Liu, A. O. Tzianabos, and D. L. Kasper, , 2005.

S. K. Mazmanian, J. L. Round, and D. L. Kasper, A microbial symbiosis factor prevents intestinal inflammatory disease, Nature, vol.453, pp.620-625, 2008.

J. R. Mellin, T. Tiensuu, C. Bé-cavin, E. Gouin, J. Johansson et al.,

, A riboswitch-regulated antisense RNA in Listeria monocytogenes, Proc. Natl. Acad. Sci. USA, vol.110, pp.13132-13137

A. Moura, A. Criscuolo, H. Pouseele, M. M. Maury, A. Leclercq et al., Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat. Microbiol, vol.2, p.16185, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01415883

T. L. Nguyen, S. Vieira-silva, A. Liston, and J. Raes, How informative is the mouse for human gut microbiota research?, Dis. Model. Mech, vol.8, pp.1-16, 2015.

C. E. Ostling and S. E. Lindgren, Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids, J. Appl. Bacteriol, vol.75, pp.18-24, 1993.

H. K. Pedersen, V. Gudmundsdottir, H. B. Nielsen, T. Hyotylainen, T. Nielsen et al., Human gut microbes impact host serum metabolome and insulin sensitivity, Nature, vol.535, pp.376-381, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594855

G. Precup and D. C. Vodnar, Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review, Br. J. Nutr, vol.122, pp.131-140, 2019.

J. J. Quereda, O. Dussurget, M. A. Nahori, A. Ghozlane, S. Volant et al., , 2016.

, Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection, Proc. Natl. Acad. Sci. USA, vol.113, pp.5706-5711

E. Qué-vrain, M. A. Maubert, C. Michon, F. Chain, R. Marquant et al., Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease, Gut, vol.65, pp.415-425, 2016.

S. Rakoff-nahoum, K. R. Foster, and L. E. Comstock, The evolution of cooperation within the gut microbiota, Nature, vol.533, pp.255-259, 2016.

N. Rolhion and B. Chassaing, When pathogenic bacteria meet the intestinal microbiota, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.371, 2016.

J. L. Round and S. K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota, Proc. Natl. Acad. Sci. USA, vol.107, pp.12204-12209, 2010.

T. G. Sana, N. Flaugnatti, K. A. Lugo, L. H. Lam, A. Jacobson et al., Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut, Proc. Natl. Acad. Sci. USA, vol.113, pp.5044-5051, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01778580

J. U. Scher, A. Sczesnak, R. S. Longman, N. Segata, C. Ubeda et al., Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis, p.1202, 2013.

M. K. Shenoy and S. V. Lynch, Role of the lung microbiome in HIV pathogenesis, Curr. Opin. HIV AIDS, vol.13, pp.45-52, 2018.

J. Si, H. J. You, J. Yu, J. Sung, and G. Ko, Prevotella as a Hub for Vaginal Microbiota under the Influence of Host Genetics and Their Association with Obesity, Cell Host Microbe, vol.21, pp.97-105, 2017.

Y. Sun, B. J. Wilkinson, T. J. Standiford, H. T. Akinbi, O. 'riordan et al., Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes, J. Bacteriol, vol.194, pp.5274-5284, 2012.

P. Van-den-abbeele, S. Roos, V. Eeckhaut, D. A. Mackenzie, M. Derde et al., Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli, Microb. Biotechnol, vol.5, pp.106-115, 2012.

P. Van-den-abbeele, C. Belzer, M. Goossens, M. Kleerebezem, W. M. De-vos et al., , 2013.

, Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model, ISME J, vol.7, pp.949-961

D. P. Wright, D. I. Rosendale, and A. M. Robertson, Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin, FEMS Microbiol Lett, vol.190, pp.73-79, 2000.

, RNA pellets were resuspended in 50 to 100 uL water. For each sample, 10 ug of RNA was treated with Dnase (Turbo DNA-free, Ambion) following manufacturer's instructions. cDNA was synthetiszed from 1 ug of RNA using QuantiTect Reverse Transcription (QIAGEN) and reactions were subsenquently diluted with 180 ul of water. qRT-PCR reactions were prepared with SYBR Green master mix. Reaction cycling and quantification was carried out in an C1000 touch Thermal cycler (CFX384, Biorad). Expression levels were normalized to the rpoB gene, vol.10

, Dlmo2776 or p2776) was inoculated into 5 mL of fresh BHI and incubated at 37 C for 6 h. Serial dilutions were plated on BHI and on Oxford media for CFU enumeration. For culture of target in presence of Listeria supernatant, 25 mL of overnight culture of Listeria were centrifuged at 13000 g and the supernatants were collected and centrifuged further to remove cells and cells debris, Presence of Supernatant or Lmo2776 Peptide For co-culture assays with Bs, a mixture of equivalent CFU (10 7 ) of Bs and Lm

. Chassaing, Briefly, colonic tissues (proximal colon, 2nd cm from the cecum) containing fecal material were placed in methanol-Carnoy's fixative solution (60% methanol, 30% chloroform, 10% glacial acetic acid) for a minimum of 3 h at room temperature. Tissues were then washed in methanol 2 3 30 min, ethanol 2 3 15 min, ethanol/xylene (1:1) 15 min and xylene 2 3 15 min, followed by embedding in Paraffin with a vertical orientation. Five mm sections were performed and dewax by preheating at 60 C for 10 min, followed by xylene 60 C for 10 min, xylene for 10 min and 99.5% ethanol for 10 min, At 16 h after inoculation (in aerobic or anaerobic conditions), cultures were serially diluted and plated. For in vivo assays, conventional mice were anaesthetized with an intraperitoneal injection of 75 mg ketamine kg À1 and 5 mg xylazine kg À1 . One hundred ul of Lmo2776 peptide (1mg in 100ml distilled H 2 O) and Localization of Bacteria by FISH Colonic mucus immunostaining was paired with fluorescent in situ hybridization (FISH), as previously described, 2011.

. Moura, 2016)representative of the diversity of lineages and sublineages of Lm. Genes were detected using the BLASTn algorithm implemented in BIGSdb-Lm platform v, Core genome MLST lmo2774, lmo2775, lmo2776 genes were screened in a collection of 1,696 publicly available genomes, vol.1, 2010.

, QUANTIFICATION AND STATISTICAL ANALYSIS Statistical Analysis Statistically significant differences were evaluated by Mann-Whitney test, one way-ANOVA test or two-tailed unpaired Student's