A. P. Feinberg, Phenotypic plasticity and the epigenetics of human disease, Nature, vol.447, pp.433-440, 2007.

J. A. Law and S. E. Jacobsen, Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet, vol.11, pp.204-220, 2010.

T. Mikeska and J. M. Craig, DNA methylation biomarkers: cancer and beyond, Genes (Basel), vol.5, pp.821-864, 2014.

A. Jeltsch and R. Z. Jurkowska, New concepts in DNA methylation, Trends Biochem. Sci, vol.39, pp.310-318, 2014.

W. Reik, Stability and flexibility of epigenetic gene regulation in mammalian development, Nature, vol.447, pp.425-432, 2007.

S. Kriaucionis and N. Heintz, The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain, Science, vol.324, pp.929-930, 2009.

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

W. A. Pastor, L. Aravind, and A. Rao, TETonic shift: biological roles of TET proteins in DNA demethylation and transcription, Nat. Rev. Mol. Cell Biol, vol.14, pp.341-356, 2013.

H. Wu, A. C. D'alessio, S. Ito, Z. Wang, K. Cui et al., Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells, Genes Dev, vol.25, pp.679-684, 2011.

R. Lister, E. A. Mukamel, J. R. Nery, M. Urich, C. A. Puddifoot et al., Global epigenomic reconfiguration during mammalian brain development, Science, vol.341, pp.626-630, 2013.

M. Mellén, P. Ayata, S. Dewell, S. Kriaucionis, and N. Heintz, MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system, Cell, vol.151, pp.1417-1430, 2012.

X. Wu and Y. Zhang, TET-mediated active DNA demethylation: mechanism, function and beyond, Nat. Rev. Genet, vol.18, pp.517-534, 2017.

S. Al-mahdawi, S. A. Virmouni, and M. A. Pook, The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases, Front. Neurosci, vol.8, p.397, 2014.

A. Madrid, L. A. Papale, and R. S. Alisch, New hope: the emerging role of 5-hydroxymethylcytosine in mental health and disease, Epigenomics, vol.8, pp.981-991, 2016.

J. Wang, J. Tang, M. Lai, and H. Zhang, ) 5-Hydroxymethylcytosine and disease, Mutat. Res. Rev. Mutat. Res, vol.762, pp.167-175, 2014.

A. Cortés and K. W. Deitsch, Malaria Epigenetics. Cold Spring Harb. Perspect. Med, vol.7, p.25528, 2017.

M. T. Duraisingh and D. Horn, Epigenetic regulation of virulence gene expression in parasitic protozoa, Cell Host Microbe, vol.19, pp.629-640, 2016.

G. S. Hailu, D. Robaa, M. Forgione, W. Sippl, D. Rotili et al., Lysine deacetylase inhibitors in parasites: past, present, and future perspectives, J. Med. Chem, vol.60, pp.4780-4804, 2017.

N. A. Malmquist, T. A. Moss, S. Mecheri, A. Scherf, and M. J. Fuchter, Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.16708-16713, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01103641

N. A. Malmquist, S. Sundriyal, J. Caron, P. Chen, B. Witkowski et al., Histone methyltransferase inhibitors are orally bioavailable, fast-acting molecules with activity against different species causing malaria in humans, Antimicrob. Agents Chemother, vol.59, pp.950-959, 2015.

K. Trenholme, L. Marek, S. Duffy, G. Pradel, G. Fisher et al., Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules, Antimicrob. Agents Chemother, vol.58, pp.3666-3678, 2014.

M. J. Gardner, N. Hall, E. Fung, O. White, M. Berriman et al.,

, Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, vol.419, pp.498-511

S. W. Choi, M. K. Keyes, and P. Horrocks, LC/ESI-MS demonstrates the absence of 5-methyl-2 -deoxycytosine in Plasmodium falciparum genomic DNA, Mol. Biochem. Parasitol, vol.150, pp.350-352, 2006.

M. Gissot, S. W. Choi, R. F. Thompson, J. M. Greally, and K. Kim, Toxoplasma gondii and Cryptosporidium parvum lack detectable DNA cytosine methylation, Eukaryot. Cell, vol.7, pp.537-540, 2008.

G. Govindaraju, C. A. Jabeena, D. V. Sethumadhavan, N. Rajaram, and A. Rajavelu, DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA, Biochim. Biophys. Acta, vol.1860, pp.1047-1057, 2017.

Y. Pollack, A. L. Katzen, D. T. Spira, and J. Golenser, The genome of Plasmodium falciparum. I: DNA base composition, Nucleic Acids Res, vol.10, pp.539-546, 1982.

Y. Pollack, N. Kogan, and J. Golenser, Plasmodium falciparum: evidence for a DNA methylation pattern, Exp. Parasitol, vol.72, pp.339-344, 1991.

N. Ponts, L. Fu, E. Y. Harris, J. Zhang, D. W. Chung et al., Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum, Cell Host Microbe, vol.14, pp.696-706, 2013.

Y. Huang, W. A. Pastor, Y. Shen, M. Tahiliani, D. R. Liu et al., The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing, PLoS One, vol.5, p.8888, 2010.

W. Trager and J. B. Jensen, Human malaria parasites in continuous culture, Science, vol.193, pp.673-675, 1976.

J. Lelièvre, A. Berry, and F. Benoit-vical, An alternative method for Plasmodium culture synchronization, Exp. Parasitol, vol.109, pp.195-197, 2005.

C. Lambros and J. P. Vanderberg, Synchronization of Plasmodium falciparum erythrocytic stages in culture, J. Parasitol, vol.65, pp.418-420, 1979.

, Methods in malaria research, 2013.

B. Bowen, J. Steinberg, U. K. Laemmli, and H. Weintraub, The detection of DNA-binding proteins by protein blotting, Nucleic Acids Res, vol.8, pp.1-20, 1980.

S. Ito, L. Shen, Q. Dai, S. C. Wu, L. B. Collins et al., Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine, Science, vol.333, pp.1300-1303, 2011.

A. Chene, S. S. Vembar, L. Riviere, J. J. Lopez-rubio, A. Claes et al., PfAlbas constitute a new eukaryotic DNA/RNA-binding protein family in malaria parasites, Nucleic Acids Res, vol.40, pp.3066-3077, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01101391

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. J, vol.17, 2011.

F. Krueger and S. R. Andrews, Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications, Bioinformatics, vol.27, pp.1571-1572, 2011.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

A. Akalin, M. Kormaksson, S. Li, F. E. Garrett-bakelman, M. E. Figueroa et al., methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles, Genome Biol, vol.13, p.87, 2012.

Q. Song, B. Decato, E. E. Hong, M. Zhou, F. Fang et al., A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics, PLoS One, vol.8, 2013.

J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander et al., Integrative genomics viewer, Nat. Biotechnol, vol.29, pp.24-26, 2011.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

F. Ramírez, D. P. Ryan, B. Grüning, V. Bhardwaj, F. Kilpert et al., ) deepTools2: a next generation web server for deep-sequencing data analysis, Nucleic Acids Res, vol.44, pp.160-165, 2016.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based analysis of ChIP-Seq (MACS), 2008.

, Genome Biol, vol.9, p.137

F. Supek, M. Bo?njak, N. ?kunca, and T. And?muc, REVIGO summarizes and visualizes long lists of gene ontology terms, PLoS One, vol.6, p.21800, 2011.

Y. Liao, G. K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, vol.30, pp.923-930, 2014.

T. Pfaffeneder, F. Spada, M. Wagner, C. Brandmayr, S. K. Laube et al., Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA, Nat. Chem. Biol, vol.10, pp.574-581, 2014.

C. S. Ng, A. Sinha, Y. Aniweh, Q. Nah, I. R. Babu et al., ) tRNA epitranscriptomics and biased codon are linked to proteome expression in Plasmodium falciparum, Mol. Syst. Biol, vol.14, p.8009, 2018.

H. Cao and Y. Wang, Collisionally activated dissociation of protonated 2 -deoxycytidine, 2 -deoxyuridine, and their oxidatively damaged derivatives, J. Am. Soc. Mass Spectrom, vol.17, pp.1335-1341, 2006.

P. B. Inc, Collaborative Data Science, 2015.

Q. Zhang, Y. Huang, Y. Zhang, X. Fang, A. Claes et al., A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites, Cell Host Microbe, vol.10, pp.451-463, 2011.

G. Zanghì, S. S. Vembar, S. Baumgarten, S. Ding, J. Guizetti et al.,

, A Specific PfEMP1 Is Expressed in P. falciparum Sporozoites and Plays a Role in Hepatocyte Infection, Cell Rep, vol.22, pp.2951-2963

W. Li and M. Liu, Distribution of 5-hydroxymethylcytosine in different human tissues, J. Nucleic Acids, p.870726, 2011.

C. E. Nestor, R. Ottaviano, J. Reddington, D. Sproul, D. Reinhardt et al., Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes, Genome Res, vol.22, pp.467-477, 2012.

A. Ruzov, Y. Tsenkina, A. Serio, T. Dudnakova, J. Fletcher et al., Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development, Cell Res, vol.21, pp.1332-1342, 2011.

B. J. Foth, N. Zhang, B. K. Chaal, S. K. Sze, P. R. Preiser et al., Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum, Mol. Cell Proteomics, vol.10, 2011.

Z. Bozdech, M. Llinás, B. L. Pulliam, E. D. Wong, J. Zhu et al., The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum, PLoS Biol, vol.1, p.5, 2003.

M. J. Booth, T. W. Ost, D. Beraldi, N. M. Bell, M. R. Branco et al., Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine, Nat. Protoc, vol.8, pp.1841-1851, 2013.

M. J. Booth, M. R. Branco, G. Ficz, D. Oxley, F. Krueger et al., Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution, Science, vol.336, pp.934-937, 2012.

H. Stroud, S. Feng, S. Morey-kinney, S. Pradhan, and S. E. Jacobsen, 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells, Genome Biol, vol.12, p.54, 2011.

K. Williams, J. Christensen, M. T. Pedersen, J. V. Johansen, P. A. Cloos et al., TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, vol.473, pp.343-348, 2011.

Y. Xu, F. Wu, L. Tan, L. Kong, L. Xiong et al., Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells, Mol. Cell, vol.42, pp.451-464, 2011.

F. Capuano, M. Mülleder, R. Kok, H. J. Blom, and M. Ralser, Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species, Anal. Chem, vol.86, pp.3697-3702, 2014.

R. M. Erdmann, A. L. Souza, C. B. Clish, and M. Gehring, 5-hydroxymethylcytosine is not present in appreciable quantities in Arabidopsis DNA, G3 (Bethesda), vol.5, pp.1-8, 2014.

Y. Tang, X. D. Gao, Y. Wang, B. F. Yuan, and Y. Q. Feng, Widespread existence of cytosine methylation in yeast DNA measured by gas chromatography/mass spectrometry, Anal. Chem, vol.84, pp.7249-7255, 2012.

B. Linder, A. V. Grozhik, A. O. Olarerin-george, C. Meydan, C. E. Mason et al., Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome, Nat. Methods, vol.12, pp.767-772, 2015.

R. Feederle and A. Schepers, Antibodies specific for nucleic acid modifications, RNA Biol, vol.14, pp.1089-1098, 2017.

G. R. Mcinroy, D. Beraldi, E. A. Raiber, K. Modrzynska, P. Van-delft et al., Enhanced methylation analysis by recovery of unsequenceable fragments, PLoS One, vol.11, p.152322, 2016.

P. M. Warnecke, C. Stirzaker, J. Song, C. Grunau, J. R. Melki et al., Identification and resolution of artifacts in bisulfite sequencing, Methods, vol.27, pp.101-107, 2002.

D. P. Genereux, W. C. Johnson, A. F. Burden, R. Stöger, and C. D. Laird, Errors in the bisulfite conversion of DNA: modulating inappropriate-and failed-conversion frequencies, Nucleic Acids Res, vol.36, p.150, 2008.

S. Bhattacharyya, K. Pradhan, N. Campbell, J. Mazdo, A. Vasantkumar et al., Altered hydroxymethylation is seen at regulatory regions in pancreatic cancer and regulates oncogenic pathways, 2017.

, Genome Res, vol.27, pp.1830-1842

C. X. Song, K. E. Szulwach, Y. Fu, Q. Dai, C. Yi et al., , 2011.

, Nat. Biotechnol, vol.29, pp.68-72

M. Mellén, P. Ayata, and N. Heintz, 5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.7812-7821, 2017.

A. Weiner, N. Dahan-pasternak, E. Shimoni, V. Shinder, P. Von-huth et al., 3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum, Cell. Microbiol, vol.13, pp.967-977, 2011.

D. Q. Shi, I. Ali, J. Tang, and W. C. Yang, New insights into 5hmC DNA modification: generation, distribution and function, Front. Genet, vol.8, p.100, 2017.

S. M. Kweon, B. Zhu, Y. Chen, L. Aravind, S. Y. Xu et al., Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease, Cell Rep, vol.21, pp.482-494, 2017.

G. Z. Luo, F. Wang, X. Weng, K. Chen, Z. Hao et al., Characterization of eukaryotic DNA N(6)-methyladenine by a highly sensitive restriction enzyme-assisted sequencing, Nat. Commun, vol.7, p.11301, 2016.

S. S. Vembar, M. Seetin, C. Lambert, M. Nattestad, M. C. Schatz et al., Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11 kb), single molecule, real-time sequencing, DNA Res, vol.23, pp.339-351, 2016.

H. G. Van-luenen, C. Farris, S. Jan, P. A. Genest, P. Tripathi et al., Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania, Cell, vol.150, pp.909-921, 2012.

P. Borst and R. Sabatini, Base J: discovery, biosynthesis, and possible functions, Annu. Rev. Microbiol, vol.62, pp.235-251, 2008.

J. H. Xue, G. D. Chen, F. Hao, H. Chen, Z. Fang et al., A vitamin-C-derived DNA modification catalysed by an algal TET homologue, Nature, vol.569, pp.581-585, 2019.

H. Wu and Y. Zhang, Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation, Institut Pasteur user on, vol.25, pp.2436-2452, 2011.