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ABSTRACT

Chemical cross-linking, combined with mass spectrometry analysis, is a key source of information for characterizing the
structure of large protein assemblies, in the context of molecular modeling. In most approaches, the interpretation is limited to
simple spatial restraints, neglecting the physico-chemical interactions between the cross-linker and the protein and of flexibility.
Here we present a method, named NRGXL (New Realistic Grid for Cross-Links), which models the flexibility of the cross-linker
and the linked side chains, by explicitly sampling many conformations. Also, the method can efficiently deal with overall protein
dynamics. This method creates a physical model of the cross-linker and associated energy. A classifier based on it outperforms
others, based on Euclidean distance or solvent accessible distance and its efficiency makes it usable for validating 3D models
from cross-linking data. NRGXL is freely available as a web server at: https://nrgxl.pasteur.fr.
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Introduction

Macromolecular assemblies play a vital role in cellular pro-
cesses. Knowing their structure is essential to get a detailed
understanding of their function. Most of the time, a single
standard structure determination method cannot be used for
these assemblies due to their size, their flexible, or their tran-
sient nature, and strategies combining structural data from
different sources (Ward et al., 2013; Lasker et al., 2010) are
increasingly being employed (Robinson et al., 2015; Lasker
et al., 2012; Alber et al., 2009; Chen et al., 2010). Due to
its relative experimental simplicity, chemical cross-linking
coupled with Mass Spectrometry (XL-MS) (Leitner et al.,
2016; Holding, 2015; Leitnera et al., 2010; Rappsilber, 2011;
Bullock et al., 2018) plays a key role in integrative structural
biology.

XL-MS uses chemical cross-linking agents (cross-
linkers) together with mass spectrometry and database search-
ing in order to identify pairs of residues covalently bonded
by the cross-linker. If we know that two residues of a given
complex are cross-linked, one can deduce that the distance
between them cannot be longer than the length of the cross-
linker. This information can be used in two ways: as a
criterion if a particular conformation is compatible with the
chemical cross-link, or as a restraint to guide molecular mod-

eling. In this work, we mostly focus on the first aspect, but we
will discuss how the method can be efficiently used directly
in molecular modeling.

Several strategies have been proposed for the structural
interpretation of cross-links. The simplest is to use the dis-
tance between the Cα carbons of the cross-linked residues as
a Euclidean metric (Robinson et al., 2015; Chen et al., 2010;
Ferber et al., 2016) (straight line, Figure 2a). For example,
Brodie et al. (Brodie et al., 2017) used cross-linking data
to model protein structures by restrained molecular dynam-
ics simulations. The crucial point of this approach was to
use short-distance cross-linkers to be able to approximate
them as an Euclidean distance restraints during the mod-
eling. Although this approximation is suitable for a short
cross-linker, this is a rough approximation for longer ones,
since it neglects the fact that the bulky cross-linkers cannot
physically overlap with the protein atoms. This criterion
classifies two residues with a Euclidean distance lower than
the cross-linker length, but deeply buried in the protein, as
cross-linkable, even though there is physically no place to
put the cross-linker, resulting in a false positive prediction.

Computing the shortest solvent-accessible surface dis-
tance (SASD) between the two residues through free space
(Figure 2a) circumvents this limitation (Degiacomi et al.,
2017; Kahraman et al., 2011; Bullock et al., 2016; Ferrari
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et al., 2019b). However, this method has limitations. For
example, for two residues located in a narrow protein cav-
ity, the SASD between the residues may be shorter than
the cross-linker length, but the cavity may be too small to
accommodate the cross-link.

Also, XL-MS data come from an ensemble of confor-
mations. In particular, lysine residues, which are typically
cross-linked, are often very flexible, and this flexibility needs
to be accounted for when comparing a particular molecular
conformation to cross-linking data. Degiacomi et al. have
shown (Degiacomi et al., 2017) that even a simple geometric
representation of side-chain flexibility (considering multiple
positions of side chain head groups on a sphere around the
Cβ carbons) increases the accuracy of cross-link assessment.

The approach we present here is designed to address all
these limitations together, by taking into account the physi-
cal energy of the cross-linker bound to the protein, and the
flexibility of the cross-linked side chains and the linker. Our
method discards the restrictive idea of a simple geometric in-
terpretation and focuses on the physico-chemical interactions
between the cross-linker and the protein, by explicitly model-
ing conformations of the cross-linker and the side chains that
do not overlap with the protein matrix. Flexibility is taken
into account by sampling multiple conformations of the side
chains and the cross-linker. This is illustrated in Figure 2b.
A Constrained Markov Chain algorithm, followed by local
energy minimization, efficiently sample cross-linker confor-
mations. Furthermore, the method can take the flexibility of
the protein matrix into account by estimating protein motions
with the anisotropic elastic network model (ANM).

The structural model used for describing the association
of cross-linkers and the protein matrix is more realistic than
purely geometric methods. Consequently, when using the
conformational energy as a classifier, it outperforms all other
proposed methods. The efficiency of the method makes it
usable in the context of molecular modeling of protein as-
semblies from cross-linking data.

Results
NRGXL: cross-link sampling approach
The approach, called NRGXL (New Realistic Grid for Cross-
Links), assesses the propensity of a cross-link to be formed
between two residues in a given structure by going beyond a
geometric approach and considering the physical interaction
between the cross-linker and the protein. The method is based
on a sampling process which, given two residues, generates
multiple cross-link conformations between them (Figure 2b)
in the context of the protein matrix. These conformations
differ in the position of the atoms of the two linked side
chains and of the linker itself (Figures 2b). In this way, the
flexibility of both the side chains and the linker are explicitly
modeled, without making geometric oversimplifications.

NRGXL employs the Constrained Markov Chain algo-
rithm on a 3D grid to sample the space that is accessible
to the side chains and the linker (Figure 1). Starting from

the Cβ atom of the first residue, the atoms of the first side
chain, the linker, and the second side chain are iteratively
placed on a neighbouring grid point with a probability de-
pending on the occupancy of the grid points (i.e., if the grid
point is close to an atom of the protein), under the constraint
that the constructed path has to connect the two Cβ atoms
of the cross-linked residues. This is repeated several times
to sample different possible conformations that are compat-
ible with the length of the cross-linker and the surrounding
protein. These initial conformations on the 3D grid are then
minimized in a standard refinement force field, allowing the
atoms to move off-grid, and the resulting conformational
energy is stored. The result is an ensemble of conformations,
each associated with an energy value. The conformation of
minimum energy is selected as the representative cross-linker
structure between the given residues, and its energy is used
as a classifier. The method is described in more detail in the
METHOD DETAILS section.

To evaluate NRGXL and compare it to the other available
methods, we used the entries from the cross-link database
(XLdb) (Kahraman et al., 2013) (see XLdb), a database of
pairs of chemical cross-links and the independently solved
corresponding X-ray crystal structure. For each entry in the
XLdb, we determined the set of compatible lysine pairs as
all pairs with a Euclidean distance shorter than the length of
the cross-linker plus the two side chains (28.42 Å when us-
ing Bissulfosuccinimidyl suberate (BS3) as the cross-linker
and two lysines as the cross-linked residues), see Binary
Classification study.

Cross-link ensembles in a static and a flexible
model
The propensity of forming a cross-link is not only influenced
by local flexibility but also by overall protein motion. We
compared the influence of a simple model of backbone flexi-
bility, the Anisotropic Network Model (ANM) (Atilgan et al.,
2001; Bakan et al., 2011), on the performance of NRGXL.
For this, we first used each deposited structure in the XLdb
in a static model. We note that the static model still contains
full flexibility for the cross-linked side chains and the linker.
We then sampled protein conformations with the ANM (see
Anisotropic Network Model), generating 10 conformations
from each deposited XLdb structure (flexible model). In this
way, we included flexibility not only of the side chains but
also of the backbone of the whole complex in a simple and
efficient way.

In the static model, 24 systems had at least one compati-
ble lysine pair satisfying the above criterion, with a total of
236 compatible lysine pairs with an experimentally detected
cross-link associated (EyXL) and 7613 compatible lysine
pairs without (EnXL). In contrast, in the flexible model, we
could include 27 systems in our analysis, accounting for 273
compatible lysine pairs with an associated experimentally de-
tected cross-link, and 13089 compatible lysine pairs without.
The nine extra conformations can easily explain the differ-
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ence in number of systems and number of compatible lysine
pairs between the static and flexible models per database en-
try in the latter. The sampling induces differences also in the
distances in lysine pairs. If a particular distance is shorter
in at least one of the nine additional conformations than in
the static conformation, the corresponding residue pair is
included in the analysis.

For each compatible lysine pair detected in the flexible
or the static model, an ensemble of cross-linker conforma-
tions was computed with NRGXL. The maximum number of
cross-link conformations generated for each lysine pair is a
user-defined parameter for NRGXL (set to 20 in the present
analysis). In some cases, the algorithm finds less than the
desired number of conformations, in essence, if the lysine
pair is too buried inside the protein matrix (see Constrained
Markov Chain algorithm).

Binary Classification: study of cross-linkability
To compare the ability of different criteria to predict the
propensity of a lysine pair to be cross-linked, we conducted a
Binary Classification study (see Binary Classification study),
for the compatible lysine pairs of both the static and flexible
models. Due to the unbalance between the number of EyXL
and EnXL, we randomly selected even populations of EyXL
and EnXL. In this classification study, four different features
were analyzed, the Euclidean distance (EucDist) between the
Cβ atoms of the two lysines; SASD between the Cβ atoms
of the two lysines, computed with the SciPy library (Jones
et al., 2001); SASD, between the Nζ atoms of the two lysines,
computed with DynamXL (DXL) (Degiacomi et al., 2017);
and the energy computed with NRGXL.

For a Binary Classification, one has to set a threshold for
a quantitative feature (here, a distance or an energy value),
which is then used to classify the elements. In the present
case, we classified compatible lysine pairs into two sets ac-
cording to an upper threshold: the set predicted to be in
cross-linkable conformations (CyXL) when the considered
value is lower than the threshold and, the set predicted not to
be in cross-linkable conformations (CnXL) for values higher
than the threshold.

As one would expect, the distributions of distances for Eu-
cDist for the two cases EyXL and EnXL (compatible distance
with and without cross-link in the database, respectively) are
different, with the mode of the distribution shifted towards
larger values for EnXL (Figure 3). We observed the same
behaviour for SASD and energies (data not shown).

A standard measure to evaluate the quality of a feature
as a classifier is the Area Under the Curve (AUC) of its Re-
ceiver Operating Characteristic curve (ROC curve) (Hand,
2009). Generally, the higher the AUC of a given feature,
the better it performs the task of Binary Classification. We
computed the ROC plots by varying the feature thresholds
between a minimum and a maximum value and calculating
the false positive and true positive rates. Using 100 randomly
selected EyXL/EnXL balanced populations, we generated

averaged ROC curves for each feature and model (Figure 4).
Figure 5 shows that for both the static and the flexible model,
the ROC curve with the highest AUC is the one represent-
ing the energy computed with NRGXL, with AUC values of
0.773±0.016 and 0.786±0.014, respectively; the difference
between NRGXL and the next best method, is even more
pronounced in the flexible model. Interestingly, Degiacomi
et al. (Degiacomi et al., 2017) also found that the inclusion
of different conformations like in the flexible model can be
important when explaining the experimental data. More-
over, we also computed the SASD using the XWalk software
(Kahraman et al., 2011), one of the most established pro-
grams to compute cross-link distances based on an SASD
evaluation. We found an AUC of 0.75±0.02 for the static
model, which is sensibly better than our SASD implementa-
tion but comparable with the AUC obtained using DynamXL
(see Figure 5).

To assess the effect of the size of the protein on the predic-
tive ability of the classifiers, we split the database into three
groups based on the size of the protein (0-2000, 2000-4000
and 4000-6000 residues). We saw that the gain of the energy
classifier relative to the EucDist classifier and the SASD is
even higher for larger systems (see Figure S1).

In some cases, the AUC of a ROC plot is not the best per-
formance indicator for predictors. For example, the AUC can
give misleading results (Hand, 2009) if ROC curves cross
each other or have different misclassification costs (false-
positive (FP) and false-negative (FN) relevance, respectively)
for their respective classifiers. In our case, the ROC curves
for NRGXL never cross the other ROC curves (Figure 4).
Also, during the whole study, we considered equal misclas-
sification costs (FP is considered equally bad as FN for all
the classifiers). In consequence, AUC is a good indicator of
classification performance in the present case.

Another good indicator is the accuracy, defined as the
fraction of correctly classified cases (true positives and true
negatives), in our case, the fraction of compatible lysine pairs
that were correctly classified. Figure 6 shows the average
accuracy depending on the energy threshold in both the static
and flexible models over 100 randomly selected EyXL/EnXL
balanced populations. 50 rounds of independent training and
validation were set up by splitting the database into two sets.
For each training, equally balanced populations were picked
up 100 times to set the optimal threshold, by maximizing the
accuracy. Then, this threshold was used to compute the accu-
racy and precision on the corresponding validation set. This
procedure was simultaneously applied to all features. In the
static model, the highest value of accuracy reached during the
training was 0.75±0.02, for an energy of 1.35±12.19 kcal
· mol−1 corresponding to an accuracy of 0.74±0.02 during
validation (Figure 6a and Table 1). In the flexible model, the
highest accuracy of 0.76± 0.02 was attained during train-
ing at an energy threshold of −8.83± 5.91 kcal · mol−1,
corresponding to an accuracy of 0.75± 0.02 in validation
(Figure 6b and Table 1). Table 1 summarizes the highest
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values of accuracy from the training, their corresponding
optimal thresholds and the resulting accuracies/precisions
from the validation for all features in the two studied mod-
els. The feature with highest accuracy and precision in the
validation subset (for both models) is the energy computed
with NRGXL. Interestingly, the optimal threshold for the
EucDist is much shorter than the straightforward Cβ distance
corresponding to the theoretical maximum distance where
a cross-link can be formed between lysine pairs (28.42 Å,
cross-linker length plus twice the lysine length). As an exten-
sion of Table 1, Table S1 includes three additional statistical
measures obtained during the validation process, sensitivity,
specificity and negative predictive value. Likewise accuracy
and precision maximum values of those new outcomes were
obtained when using NRGXL. Table S1 also presents an al-
ternative optimal threshold selection method based on ROC
curves (closest-to-(0,1) (Unal, 2017)) which results in similar
statistical measures.

To ensure that maximum accuracies used to select our
optimal thresholds do not overlap with the distribution of
the accuracy of a random classifier (black dotted lines in
Figure 6, we computed a p-value for each one of them (Fig-
ure 6) (more details of how this p-value was calculated in
Binary Classification study: treatment of random errors.) In
both models, and for all four features, the highest values of
accuracy had p-values close to 0.

Moreover, in the case of energy, the values of accuracy
with p-values over 0.05, which are not significant, are con-
centrated in the lower and upper limits of the energy range of
values (Figure 6). This result is because taking a left or right
limit feature values as thresholds implies to classify almost
all compatible lysine pairs in one of the two categories CyXL
or CnXL. When picking a left limit threshold, we are classi-
fying the vast majority of compatible lysine pairs as CnXL,
and when picking a right limit threshold, we are classifying
almost all compatible lysine pairs as CyXL. This ”boundary”
behavior is independent of the feature studied.

Finally, the outcomes of one Binary Classification study
using all available compatible lysine pairs per feature and
model is shown in Figure 7. Here, we took as cut-offs the
earlier calculated optimal thresholds. It is important to keep
in mind that the total number of compatible lysine pairs
(T P+T N +FP+FN) remains constant between features of
the same model. An increased number of TN compared to FP
explains the major improvement of the energetic approach
relative to the geometrical approaches (DynamXL, SASD
and EucDist). This can be quantified by the specificity, which
is defined as the fraction of EnXL correctly classified as true
negative (specificity = T N

T N+FP ). This tendency is obvious
for the static model where the number of TN is constantly
increasing from the Euclidean based approach to the SASD,
DynamXL and finally the energetic approach which reaches
a specificity of 0.71. See Binary Classification study for more
details on the generation of these outcomes.

Efficiency
The results of the efficiency test are presented in Table.2. As
expected, no dependency is found in between the time needed
for the sampling of an ensemble of cross-link conformations
per residue pair and the size of the complex. Nonetheless,
we can see a dependency of the overall time (sum of the
sampling time and the preparation time) required for gen-
erating an ensemble and the size of the complex. Whereas
the sampling time is the time needed for the Markov Chain
algorithm to generate the ensemble in the context of a small
local grid encircling the targeting residues, the preparation
time is the time needed to, through a whole complex grid,
compute the smaller sampling grid (more details in Sampling
approach). Hence, the preparation time is the one carrying
the latter mentioned dependency observed in the overall time.

Discussion
NRGXL, the approach to assess the propensity of a residue
pair to be cross-linked departs from the traditional, geometri-
cal cross-link interpretation to focus on the physico-chemical
interactions between the cross-linker and the protein. In terms
of XL-MS data interpretation, the two main improvements
of our sampling method are: (1) a more realistic structural
model of the cross-linker (2) and an efficient and accurate
model to treat the flexibility of the XL, the side chains, and
the whole complex.

The Binary Classification study, where we analyzed the
performance of different XL statistics as predictors of cross-
linkability, clearly showed that spatial statistics used by pre-
vious studies such as Euclidean distance (Robinson et al.,
2015; Chen et al., 2010; Ferber et al., 2016) or SASD (Degia-
comi et al., 2017; Kahraman et al., 2011) perform less well
than the energy computed by NRGXL. This indicates that
the explicit cross-linker structures, including their pyshico-
chemical interactions with the protein, are in better agreement
with XL-MS data. This emphasizes the importance of taking
into account the physico-chemical interactions between the
cross-linker and the protein when interpreting XL-MS data.

The optimal thresholds determined in this study differ
from what one could naively expect and should be the ones
used when assessing a structure. The fact that the EucDist
optimal threshold was much lower than the straightforward
Cβ EucDist (which would be the usual distance restraint used
when modeling) highlights the importance of carefully eval-
uating the influence of a threshold in binary classification.
Further studies using these thresholds also as values for re-
straints during modeling should be performed. We note that
the optimal EucDist value found in this study is not only close
to the value used in our modeling of the Pol III RNA poly-
merase (Ferber et al., 2016) but also in the range of a more
recently proposed threshold by Ferrari et al. (Ferrari et al.,
2019a) which was measured by an independent approach in
a different database.

Our method outperforms the geometrical approaches
especially by classifying better the FP to TN (Figure 7).
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NRGXL overcomes the limitations of EucDist and SASD:
one can imagine two residues in a small cavity with a dis-
tance compatible with the cross-linker length and without an
experimentally detected cross-link between them (EnXL). If
we determine the EucDist and SASD between these residues,
they will be shorter than the cross-linker length. Hence,
both EucDist and SASD will classify this pair of residues
as CyXL and consequently generate an FP. In contrast, the
energy of an XL conformation generated between them will
be high if there is not enough space to properly accommo-
date the cross-linker in the cavity, leading to classification as
CnXL, corresponding to a TN. Therefore the physical model
developed here better describes the steric hindrance of the
cross-linker that is not taken into account either in the Eu-
cDist nor in the SASD approach. For the number of TP, our
predictor does not show significant improvement compared
to the geometrical approach. This tendency is in part due
to the incompleteness of XL-MS data since only a subset
of cross-linkable lysines is detected as being linked, thus
inducing cross-links labeled as FP which should be labeled
as TP.

Due to its efficiency and accuracy, NRGXL can be used
as a more realistic description of cross-linking restraints dur-
ing modeling. However, the computational cost of NRGXL
is evidently higher than calculating an Euclidean distances.
Therefore, NRGXL could be used as a post-modeling filter,
as it has already been suggested for SASD (Merkley et al.,
2014), to assess the quality of the models resulting from
a classical modeling approach using Euclidean distance re-
straints, or be used as part of a modeling strategy that uses
a full calculation of realistic distances relatively rarely (e.g.,
(Ferber et al., 2016)). The efficiency is achieved without
neglecting the importance of flexibility. Residue side chains
experience rapid motions in solution (Henzler-Wildman and
Kern, 2007), and XL-MS data represents an ensemble of
different conformations. Hence, sampling several conforma-
tions for a given cross-link allows our method to deal with
multiple side chain orientations and therefore incorporate
side chain flexibility. The importance of treating also the
overall flexibility is evidenced by the comparison between
the static and flexible models. While in the static model we
only considered side chain flexibility, in the flexible model we
explicitly generated multiple conformations of the complete
system with an anisotropic network model. This improves
the performance not only of the approaches based on EucDist
and SASD but also of NRGXL. The accuracy and efficiency
of our method make it the method of choice to be used during
the modeling of macro-molecular complexes.
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STAR ? METHODS
KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Software and Algorithms
NRGXL server This paper https://nrgxl.pasteur.fr
NRGXL software and manual This paper https://gitlab.pasteur.fr/bougui/NRGXL
CNS (Brunger et al., 1998; Brunger, 2007) http://cns-online.org/v1.3/
Other
XLdb (Kahraman et al., 2013) https://doi.org/10.1371/journal.pone.0073411.s008

LEAD CONTACT AND MATERIALS AVAILABILITY
Further information and requests for data should be directed to and will be fulfilled by the lead contact Guillaume Bouvier
(guillaume.bouvier@pasteur.fr).

METHOD DETAILS
Sampling approach
NRGXL samples cross-linker conformations between two reactive amino-acid residues, usually lysines. For each cross-link,
the system sampled is composed of the side chains of the two residues and the cross-linker molecule bridging them. The
cross-linker and the lysine side chains are incrementally built step by step from the Cβ of the cross-linked lysines.

Before sampling, the initial protein structure is prepared as follows: i) the protein backbone is fixed; ii) the side chains
of the two residues are reduced to their Cβ atoms; iii) the Cβ of the two residues are selected as start and endpoints of the
incremental building; iv) the number of incremental building steps is established by the length of the cross-linker and the length
of the two side chains; v) a grid-based density map is created surrounding the entire macro-molecular complex, the grid points
being used to place atoms of the sampled conformations vi) for each pair of cross-linked residues, a smaller grid box is selected
surrounding the two residues, and the transition matrix and its powers are calculated (see Density map and transition matrix).

After this preparation stage, conformations are generated one by one. The incremental building of the cross-linker and
the lysine side chains are driven by a constrained Markov Chain algorithm (see Constrained Markov Chain algorithm), which
first construct the side chain of the start residue, then the cross-linker molecule and finally the side chain of the end residue.
Concretely, the constrained Markov chain algorithm samples a path of fixed length between the fixed start and endpoints. This
path is generated step by step, moving at each step from one grid point to another. The sampling movement is directed by the
transition probabilities, which provide the probabilities of moving from one grid point to another, given the current position and
the initial conditions. The transition probability is higher when the density at a grid point is lower in such a way that paths
avoiding the protein matrix are preferentially sampled.

Once a conformation of the cross-linker and the attached side chains is generated, we use CNS (Brunger et al., 1998;
Brunger, 2007) to energy minimize the conformation and obtain an overall energy value for its interaction with the protein and
its internal conformation (for more details see CNS minimization).

This process is repeated several times, generating an ensemble of different cross-linker and side chain conformations, to-
gether with their energies. Having multiple conformations for a given pair of residues serves to choose an optimal conformation,
i.e., the one of lowest energy, and also serves as a measure of the diversity of the possible conformations.

Density map and transition matrix
The density map is computed from a given PDB structure by making use of the Python library TEMPy (Farabella et al., 2015).
It is generated as a mesh grid with the step size of 1.1 Å. This value results in an average distance over all possible directions of
the grid of about the length of a C-C bond (1.54 Å).

The constrained Markov Chain algorithm is characterized by its transition matrix, which works as a measure for the
transition probabilities (see Constrained Markov Chain algorithm). This transition matrix is square n×n where n is the number
of cells in the density grid. An element ai j of the matrix represents the probability measure (after normalization) between the
cell i and the cell j and is given by:

ai j = Pi j =

{
e−β (d j−di), if i and j are neighbours in space
0, if i and j are not neighbours in space

(1)

where d j and di are the densities of the cells j, and i, respectively, and β is a parameter which works as a modulator of the
exponential intensity (in our study it was set to 50 after a short process of optimization).

We chose this probability in order to give a sense of directionality to the sampling process. If d j� di⇒ d j−di� 0⇒
Pi j→ 0 meaning that the probability to move from a cell with low density to one with high density is very low (as it should be).
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On the other hand, if d j � di⇒ d j−di� 0⇒ Pi j → ∞, this implies that the probability of moving from a cell with higher
density to another with lower density is quite high. This directionality prioritizes the formation of side-chain and cross-linker
conformations in areas with low density.

We work with small grids around each cross-linked residue pair to drastically reduce memory requirements, in particular in
large macro-molecular complexes. The small grid has the size necessary to encompass all possible cross-linker conformations.
The transition matrix is then computed in this small box rather than on the whole density grid.

Constrained Markov Chain algorithm
We use a Constrained Markov Chain to sample conformations of the cross-linker, and the two side chains Constrained Markov
Chain. This is a stochastic process (collection of random variables Xn) that satisfies the Markov property (the conditional
probability distribution of future states of the process depends only on the present state). A constrained Markov Chain can
be defined as a Markov Chain in which for every step the transition probabilities have a new constant condition. For a given
probability space, with Pi j a probability measure and {Xi}i∈N a set of random variables, the transition probability between
states n and n+1 is:

P(Xn+1 = b|Xn = a,XN = c) =
PN−(n+1)

bc ·Pab

PN−n
ac

(2)

where XN = c is the constant condition for each step.
When sampling cross-linker conformations between a pair of reactive residues, the constant condition XN = c of the

algorithm serves to enforce the cross-linked structure to finish at a given position c (the fixed end point) and at a given state
number N (fixed length of the cross-link). Moreover, the probability measure Pi j is given by the transition matrix (see Density
map and transition matrix). The detailed proof of Eq.2 is given in the Constrained Markov Chain algorithm proof subsection of
the Supplemental Information.

The fact that the probability measure Pi j depends on the density at the grid point leads in some cases to the result that fewer
conformations than desired, or no conformations at all, are found. The transition probabilities between one state and its spatial
neighbour states are calculated according to equations Eq.2 and Eq.1 (the states that are not neighbours in space have transition
probability 0). The states of the sampling process are selected step by step, according to these probabilities. If all neighbor
transition probabilities are lower than the parameter ε that Python uses to determine if a particular value is 0, the transition
probability vanishes. In this case, the next stage in the sampling process cannot be selected, and the process ends without being
able to reach the fixed endpoint (the position of the Cβ of the end residue). These incomplete cross-linker conformations are
discarded from the final ensemble, generating ensembles with less than 20 conformations.

Constrained Markov Chain algorithm proof
Definition The m-step transition probability is the probability to move from state i to state j in m steps:

p(m)
i j = P(Xn+m = j|Xn = i)

Definition The single-step transition probability is the probability to move from state i to state j in one step:

pi j = P(Xn+1 = j|Xn = i)

Definition The m-step transition matrix P(m), is the matrix whose {ai j} elements are the m-step transition probabilities.
Definition The single-step transition matrix P, is the matrix whose {ai j} elements are the single-step transition probabilities.

Lemma 1 The m-step transition matrix, is equal to the single-step transition matrix multiplied by itself m times.

P(m) = Pm

Proof: Moving from state i to state j in m steps is the same than moving first from state i to state r in m-k steps and then
from state r to state j in k steps:

p(m)
i j = ∑

r
p(m−k)

ir p(k)r j ,

which implies that
P(m) = P(m−k) ·P(k).
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Setting k = m−1 we have that

P(m) = P ·P(m−1), (3)

from which we can deduce that

P(m−1) = P ·P(m−2). (4)

Substituting Eq.4 into Eq.3 we have that

P(m) = P ·P ·P(m−2),

and iterating

P(m) = P ·P · · ·P = Pm

Theorem 1 The single-step transition probability of a Markov Chain between the state i and the state j knowing that in N steps
we must be at state iN is:

P(Xn+1 = j|Xn = i,XN = iN) =
PN−(n+1)

jiN ·Pi j

PN−n
iiN

Proof:

P(Xn+1 = j|Xn = i,XN = iN) =
P(Xn+1 = j,Xn = i,XN = iN)

P(Xn = i,XN = iN)
=

P(XN = iN |Xn+1 = j,Xn = i)P(Xn+1 = j,Xn = i)
P(Xn = i,XN = iN)

=

P(XN = iN |Xn+1 = j)P(Xn+1 = j|Xn = i)P(Xn = i)
P(XN = iN |Xn = i)P(Xn = i)

=

P(XN = iN |Xn+1 = j)Pi j

P(XN = iN |Xn = i)
=

PN−(n+1)
jiN Pi j

PN−m
iiN

where in the third equality we used the Markov property (P(XN = iN |Xn+1 = j,Xn = i) = P(XN = iN |Xn+1 = j)) and in the
last we used the Lemma 1

CNS minimization
To rapidly minimize the energy of the generated cross-linker conformations, we use the program CNS (Brunger et al., 1998;
Brunger, 2007). To generate the topology file for the used cross-linker, we used the PRODRG server (Schüttelkopf and van
Aalten, 2004). The topology defines the different bonded and non-bonded interactions between specific atoms through a force
field (CHARMM (MacKerell et al., 1998)), which is used to compute potential energy. The total energy includes internal
parameters (bond length, bond angle, improper and dihedral angles) and non-bonded interactions with full van der Waals
and electrostatic potentials with a 13 Å non-bonded cutoff. Cross-linker conformations were minimized with 2,000 steps of
conjugate gradient minimization. During the minimization, atoms of the protein complex were kept fixed, and only the atoms
of the cross-linker and cross-linked side chains could move freely.

Anisotropic Network Model
To assess the influence of the global flexibility of the entire system, we used normal mode analysis with an anisotropic network
model (Atilgan et al., 2001) (ANM) with ProDy (Bakan et al., 2011) (open-source Python package for protein structural
dynamics). ANM nodes were the Cα atoms. For each entry in the XLdb database, ten decoy conformations were generated
along the first non-trivial mode, with a maximum amplitude of oscillation of 2 Å.
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QUANTIFICATION AND STATISTICAL ANALYSIS
Binary Classification study
The binary classification scheme serves to predict if two residues can be cross-linked based on several features. It served us to
rigorously compare the quality of predictions based on the different features. For this, we analyzed all lysine pairs from a set
of 53 different PDB structures for which experimental XL-MS data were available in the XLdb database (Kahraman et al.,
2013) (see XLdb) that were evaluated as compatible by a simple distance criterion. This database contains cross-linking data
using BS3/DSS cross-linkers. Size, hydrophobicity, and charge of the cross-linker previous to the cross-linking event were not
considered in our analysis. Therefore, due to the identical conformation of DSS and BS3 after being cross-linked, we equally
handle both types of cross-links. In summary, we analyzed lysine pairs with Cβ -Cβ distance shorter than 28.42 Å, which is
the maximum length that an XL conformation formed by two lysine side chains (13.44 Å each), and a BS3/DSS cross-linker
(14.98 Å), can adopt.

Database entries with high inconsistency between experimental data (list of cross-links from XLdb) and structural data
(PDB structures) were discarded. More precisely, for all systems, a ROC plot per feature was computed. Then, systems with an
AUC below 0.75 for all features were removed. In other words, we ended up discarding database entries for which structure
and experimental data were not in agreement for any feature.

During the binary classification analysis, the same number of compatible lysine pairs with an experimentally detected
XL (EyXL) and compatible lysine pairs without an experimentally detected XL (EnXL) were selected to ensure balanced
population sets. For both the static and flexible models, we randomly selected compatible lysine pairs to arrive at equal numbers
of EnXL and EyXL. For all compatible lysine pairs in the selected population (EyXL and EnXL), features such as SASD,
EucDist, or NRGXL energy were computed.

Each computed feature value was tested as a classifier. For a given threshold, compatible lysine pairs with a value smaller
(or higher depending on the physical meaning of the feature) than this threshold were classified as cross-linkable (CyXL), and
compatible lysine pairs with a value higher (or smaller, respectively) than the threshold were classified as not cross-linkable
(CnXL). EyXL classified as CyXL are considered as true positives (TP), and EyXL classified as CnXL we labeled as false
negative (FN). Accordingly, False positives (FP) and true negatives (TN) correspond to EnXL classified as CyXL or CnXL,
respectively. To check the accuracy and precision of our binary classification process for a specific feature threshold as a
classifier, we used the following equations:

Accuracy =
T P+T N

T P+T N +FP+FN
(5)

Precision =
T P

T P+FP
(6)

The computed accuracy reports the proportion of well-classified compatible lysine pairs while the precision reports the
proportion of positive classified pairs (CyXL) that are genuine positives (CyXL and EyXL simultaneously).

For each feature, and multiple thresholds, we computed the value of accuracy, the value of precision, the false-positive rate
(FPR = FP

FP+T N ) and the true-positive rate (T PR = T P
T P+FN ). Accuracies were first computed during a training step in order

to define an optimal threshold (as the one with the highest accuracy). Then these optimal thresholds were employed during
a validation step to calculate a new accuracy and a precision value. In contrast, the FPR and TPR ratios were measured at
once (without partitioning the data into training and validation) to generate a Receiver Operating Characteristic (ROC) curve.
Accuracy, precision and ROC curves served to compare the quality of different features as a classifier.

Binary Classification study: treatment of random errors
To obtain balanced population sets of EyXL and EnXL, we randomly picked a group of EnXL to match the number of EyXL.
This stochastic selection could induce random errors. For this reason, for each feature threshold, we generated 100 random
balanced populations and computed their respective accuracies, precisions, FPR, and TPR. Then, for the particular threshold,
the mean accuracy, precision, FPR, and TPR over these 100 populations were selected as representative. In addition, to ensure
that the obtained mean values of accuracy per feature threshold in the training set were not affected by the random selection
of balanced populations, we computed a p-value per each one of them. For this purpose, random average accuracies were
calculated in parallel to the usual average accuracies and then compared. These average random accuracies were calculated by
arbitrarily associating a value of cross-linkability (EyXL or EnXL) to all the cross-links involved in the binary classification
study. In this way, we perform parallel binary classification studies for a random classifier from which we obtain random
average accuracies. Thereby, we end up with a random and a regular average accuracy per feature threshold which can be
compared to obtain a p-value used as a criterion to define two twilight zones (for low and high thresholds respectively) where
the accuracy distribution of the random classifier overlaps with our classifier.
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DATA AND CODE AVAILABILITY
XLdb
XLdb (Kahraman et al., 2013) is a cross-link database, containing 506 intra-protein and 62 inter-protein cross-links from 14
publications. For all the entries in the database, either DSS or BS3 cross-linkers were used, which implies that all the database
cross-links are between lysine residues. All these cross-links can be mapped to 56 different PDB structures. All the structures
and the list of residue pairs cross-linked used are publicly available in the NRGXL repository (see below).

NRGXL implementation
NRGXL is implemented in Python and is freely available as a python package. The most recent version can be found
here: https://gitlab.pasteur.fr/bougui/NRGXL. NRGXL is also accessible as a web server at: https:
//nrgxl.pasteur.fr.

11/18

https://gitlab.pasteur.fr/bougui/NRGXL
https://nrgxl.pasteur.fr
https://nrgxl.pasteur.fr


Figures & Tables titles/legends

Figure 1. Sampling approach
Sampling algorithm 2D (from 0 to nth step) sketch used to generate cross-link conformations in 3D grids. Black dots represent
the grid cells where the Cβ of the cross-linked residues are located and hence the Constrained Markov Chain initial conditions.
Each red dot represents one sampling step.

Figure 2. Different approaches to computationally characterize cross-linker structures
(a) Euclidean distance and shortest solvent-accessible surface distance between two lysines in RNA Pol II, both computed
between the Cβ of the two residues. (b) An ensemble of sampled cross-link conformations between two lysines in RNA pol II,
starting and ending in Cβ atoms. This ensemble was computed with our approach, which associates conformational energy to
each of the cross-link conformations.
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Figure 3. Euclidean distance distributions
(a), (b) Comparison of EucDist values between EyXL and EnXL for the static (a) and the flexible model (b)
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Figure 4. ROC plots for different statistics
(a), (b) To generate each one of these ROC plots, different values of the features were selected as thresholds during a Binary
Classification study. Then, for each one of them, their mean false positive rate and their mean true positive rate were computed
over 100 randomly selected EyXL/EnXL balanced populations. The light-colored error bars surrounding the curves represent
their ± standard deviation. In figure (a), the ROC plots represent features of the static model. Meanwhile, the ROC plots of
figure (b) represent features of the flexible model.
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Figure 5. AUC from different statistics and different models
These values where obtained from the ROC plots of the Figure 4. S and ANM are related with the static model and the flexible
model respectively.
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Figure 6. Mean accuracy for different energy thresholds of both the static and the flexible model on a training subset.
(a), (b) The blue plot represents the mean accuracy per energy threshold obtained over 100 randomly selected EyXL/EnXL
balanced populations. The light blue error bars surrounding the mean accuracy plot represent the ± standard deviation. The
black plot, almost perfectly aligned with accuracy = 0.5, represents the generated random mean accuracy per energy threshold
computed in order to calculate mean accuracy p-values (see Binary Classification study: treatment of random errors). The
different dotted lines represent one, two, and three times the random standard deviations. Finally, orange-colored areas show
energy thresholds for which the corresponding accuracy has a p-value below 0.05, and which are therefore not significant. (a)
static model; (b) flexible model.
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Figure 7. Plain outcomes for Binary Classification studies.
Outcomes of seven Binary Classification studies for the different features available in both models and using all compatible
lysine pairs (without balanced populations). The threshold for each of these studies was set to the range of the optimal
thresholds. The resulting specificity per each study is shown below. Static and ANM refer to the static model and the flexible
model described previously. The values indicated on the bar plot give the count for the four corresponding classes (FN, FP, TN,
TP).
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Training Validation
Accuracy Optimal Threshold Accuracy Precision

EucDist S 0.68±0.02 16.03±0.95 Å 0.66±0.02 0.65±0.03
SASD S 0.71±0.02 30.59±1.33 Å 0.69±0.03 0.67±0.03
DXL S 0.72±0.02 9.08±0.80 Å 0.71±0.02 0.70±0.03
NRGXL S 0.75±0.02 1.35±12.19 kcal ·mol−1 0.74±0.02 0.72±0.03
EucDist ANM 0.70±0.02 16.80±1.35 Å 0.67±0.02 0.66±0.02
SASD ANM 0.70±0.02 30.28±0.35 Å 0.69±0.03 0.67±0.03
NRGXL ANM 0.76±0.02 −8.83±5.91 kcal ·mol−1 0.75±0.02 0.73±0.03

Table 1. Training highest mean accuracy, optimal threshold, and its corresponding validation average accuracy and
average precision per feature and model.
S and ANM stand for static and flexible model

Sampling time Preparation Time Overall Time
1wcm (4521 residues) 0.479±0.050s 0.330±0.207s 0.809±0.146s
4f5s (1166 residues) 0.479±0.048s 0.133±0.037s 0.612±0.056s
4fgf (146 residues) 0.502±0.060s 0.022±0.001s 0.524±0.060s

Table 2. Efficacy study results
Efficiency test outcomes from three different sized complexes presented as the mean generation time per cross-link
conformation ± standard deviation computed through all the compatible lysine pairs per system.
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Figure S1. Effect of the protein size on different classifier performance. Related to Figure 5
Compatible lysine pairs from the static model were splitted into 3 groups based on the number of residues of the protein were
they belong (0-2000, 2000-4000, 4000-6000 residues). Then, we computed an AUC per classifier (Eulidean, SASD or energy)
for each defined group.
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Static ANM
EucDist S SASD S DynamXL S NRGXL S EucDist ANM SASD ANM NRGXL ANM

Accuracy Train. 0.68±0.02 0.71±0.02 0.72±0.02 0.75±0.02 0.70±0.02 0.70±0.02 0.76±0.02
Accuracy OT. Train. 16.03±0.95 Å 30.59±1.33 Å 9.08±0.80 Å 1.35±12.19 kcal ·mol−1 16.80±1.35 Å 30.28±0.35 Å −8.83±5.91 kcal ·mol−1

Accuracy Val. 0.66±0.02 0.69±0.03 0.71±0.02 0.74±0.02 0.67±0.02 0.69±0.03 0.75±0.02
Precision Val. 0.65±0.03 0.67±0.03 0.70±0.03 0.72±0.03 0.66±0.02 0.67±0.03 0.73±0.03
Sensitivity Val. 0.69±0.06 0.77±0.06 0.73±0.04 0.78±0.04 0.72±0.09 0.76±0.04 0.78±0.04
Specificity Val. 0.63±0.08 0.60±0.06 0.69±0.04 0.70±0.05 0.62±0.08 0.63±0.04 0.72±0.04
NPV Val. 0.68±0.03 0.74±0.04 0.72±0.03 0.76±0.03 0.70±0.05 0.72±0.03 0.76±0.03

(0,1) Distance Train. 0.46±0.02 0.42±0.01 0.39±0.02 0.36±0.02 0.43±0.02 0.43±0.01 0.35±0.01
(0,1) OT. Train. 15.58±0.49 Å 29.34±0.64 Å 8.67±0.54 Å −6.78±8.03 kcal ·mol−1 15.94±0.41 Å 29.74±0.61 Å −12.31±3.87 kcal ·mol−1

Accuracy Val. 0.66±0.02 0.69±0.03 0.70±0.02 0.73±0.02 0.68±0.02 0.69±0.02 0.74±0.02
Precision Val. 0.66±0.03 0.68±0.02 0.70±0.03 0.73±0.03 0.68±0.03 0.67±0.02 0.73±0.03
Sensitivity Val. 0.67±0.05 0.73±0.06 0.72±0.04 0.76±0.04 0.69±0.04 0.72±0.05 0.76±0.03
Specificity Val. 0.66±0.05 0.66±0.04 0.69±0.05 0.71±0.05 0.68±0.05 0.65±0.04 0.72±0.04
NPV Val. 0.67±0.03 0.70±0.04 0.71±0.03 0.74±0.03 0.68±0.03 0.69±0.04 0.75±0.02

Table S1. Training highest mean accuracy, optimal threshold, and corresponding validation statistical metrics per
feature and model obtained through two different threshold selection approaches. Related to Table 1.
Extension of Table 1 with the closest-to-(0,1) threshold selection alternative (Unal, 2017) and with the inclusion of three new
statistical measures (sensitivity, specificity and negative prediced value) per optimal cutting point method. Closest-to-(0,1)
approach utilise a ROC curve to calculate a feature threshold. This is defined as the curve point minimizing its straight-line
distance with the (0,1) corner. S and ANM stand for static and ANM model respectively, OT for Optimal Threshold, NPV for
negative predicted value ,Train. for training and Val. for validation.
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