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Originally defined for the optimal allocation of resources, optimal transport (OT) has found many
theoretical and practical applications in multiple domains of science and physics. In this Letter we develop
a new method for solving the discrete version of this problem using techniques derived from statistical
physics. We derive a strongly concave free energy function that captures the constraints of the OT problem
at a finite temperature. Its maximum defines an optimal transport plan, or registration between the two
discrete probability measures that are compared, as well as a pseudodistance between those measures that
satisfies the triangular inequalities. The computation of this pseudodistance is fast and numerically stable.
The temperature dependent OT pseudodistance is shown to decrease monotonically with respect to the
inverse of the temperature and to converge to the standard OT distance at zero temperature, providing a
robust framework for temperature annealing. We illustrate applications of this framework to the problem of
image comparison.
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Imagine that there are N1 flour milling plants around
Paris, France, that serve N2 bakeries within Paris, and let us
assume balance, namely that there is as much flour
produced by the plants as needed by the bakeries. A
company in charge of the distribution of the flour will
take into account the individual cost of transporting some
amount of flour from one plant to one bakery to find an
“optimal transport plan,” namely an assignment of how
much flour needs to be transported between each plant and
each bakery that leads to a minimal overall cost for the
transport. Finding a solution to this seemingly simple
practical problem has led to the development of a small
gem in the mathematics and statistics communities, namely
the optimal transport (OT) problem. What makes the OT
problem so interesting is that its solution includes two
essential components. First, it defines a distance between
the distributions considered, with such distance being
referred to as the Monge-Kantorovich distance, the
Wasserstein distance, or the earth mover’s distance,
depending on the field of applications. These distances
have enabled statisticians and mathematicians to derive a
geometric structure on the space of probability distributions
[1,2]. Second, it also provides the optimal transportation
plan between the distributions; this optimal plan defines a
registration, thereby enabling alignment between the dis-
tributions. Applications of OT have exploded in the recent
years, in domains such as machine learning, computer
vision, and linguistics. Multiple fields of physics are
also impacted, from applications of OT to density func-
tional theory [3], quantum mechanics [4], stochastic

thermodynamics [5], and general relativity [6], among
others. For extensive reviews of OT and its applications,
see [1,2].
Our focus in this Letter is on the discrete version of the

OT problem. We consider two sets of points S1 of size N1

and S2 of size N2. Each point k in S1 (S2) is assigned a
“mass” m1ðkÞ [m2ðkÞ]. The balance condition implies thatP

k m1ðkÞ ¼
P

l m2ðlÞ. We assume that these two sums are
equal to 1. We encode the cost of transport between S1 and
S2 as a positive matrix Ckl with k ∈ f1;…; N1g and
l ∈ f1;…; N2g. The OT problem can then be formulated
as finding a matrix G of correspondence between points in
S1 and points in S2 that minimizes the transport cost U
defined as

UðGÞ ¼
X
k;l

GklCkl ð1Þ

where the summations extend over all k in S1 and l in S2.
The minimum of U is to be found for the values of Gkl that
satisfy the following constraints:

∀ ðk; lÞ; Gk;l ≥ 0; ð2aÞ

∀ k;
X
l

Gkl ¼ m1ðkÞ; ð2bÞ

∀ l;
X
k

Gkl ¼ m2ðlÞ: ð2cÞ

PHYSICAL REVIEW LETTERS 123, 040603 (2019)

0031-9007=19=123(4)=040603(6) 040603-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.040603&domain=pdf&date_stamp=2019-07-26
https://doi.org/10.1103/PhysRevLett.123.040603
https://doi.org/10.1103/PhysRevLett.123.040603
https://doi.org/10.1103/PhysRevLett.123.040603
https://doi.org/10.1103/PhysRevLett.123.040603


The solution to the OT problem provides an optimal
transport plan Gopt and the corresponding minimum trans-
port cost Umin ¼ UðGoptÞ. The minimum cost defines a
“distance” between the two sets of points. It has all the
properties of a metric when the cost matrix C is a metric
matrix, see [1]. This metric is often referred to as the
Wasserstein distance WðS1; S2Þ between the two sets of
points. In this Letter we will make the same assumption that
C is a metric matrix.
Note that the first condition on G, (2), extends to 0 ≤

Gkl ≤ 1 for all k and l, based on our assumption that the
sum of the discrete probability measures are 1 on both sets
of points. Optimizing (1) under the constraints (2) is a
linear programming (LP) problem. While much progress
has been achieved for solving those problems [7], current
practical implementations are roughly of order Oðn3Þ
[where n ¼ maxðN1; N2Þ], with a quadratic complexity
in the number of variables considered. Such complexity
levels are considered problematic when n is larger than a
few thousands.
Interestingly, the current successes of OT have been

triggered by the idea of minimizing a regularized version of
Eq. (1):

UϵðGÞ ¼
X
kl

GklCkl − ϵ
X
k;l

Gkl lnðGklÞ; ð3Þ

where ϵ is the regularization parameter, and the second term
is an entropic barrier that enforces the positivity of the Gkl
terms [8]. This regularized version of optimal transport is
often called the Schrödinger problem [9]. It maps to the
traditional OT problem as ϵ → 0; in addition, the optimal
solution UðGoptÞ where Gopt has been computed at a given
ϵ is a pseudodistance, referred to as the Sinkhorn distance
[8]. Note that it is labeled as a pseudodistance as it only
satisfies the symmetry and triangular inequality properties
of a metric [10]. The entropic penalization has the advan-
tage that it defines a strongly convex problem with a unique
solution [8]. Another advantage of the regularized OT
problem is that its solution can be found efficiently using
Sinkhorn’s algorithm [11,12], with a time complexity of
Oðn2Þ. This algorithm finds solutions for a given value of
the relaxation parameter ϵ. For small values of this
parameter, numerical issues may arise and a stabilization
is necessary [13]. Convergence of a stabilized Sinkhorn
algorithm can nevertheless be very slow when ϵ is small.
Such small values are, however, desirable for finding good
approximations to the solution of the nonregularized OT
problem. A popular heuristic solution to this problem is the
so-called ϵ scaling, where one solves the regularized
problem with gradually decreasing values for ϵ [14]. To
our knowledge, no quantitative analyses of the convergence
of such an ϵ-scaling method are available.
In this Letter, we develop an alternate framework for

solving the OT problem that is derived from a statistical

physics point of view and report on its applications to
computing the similarities between images. A more
detailed theoretical and numerical analysis is presented
in a companion paper [15]. In this framework, we exploit
the formal analogy of the cost function in Eq. (3) to a free
energy (ϵ is then the analog of a temperature, T). It can be
seen as a generalization of the so-called invisible hand
algorithm, which used a similar approach for solving the
assignment problem [16].
In statistical physics, a system that is in thermal

equilibrium at finite temperature will sample many states.
The corresponding Gibbs distribution represents the prob-
ability of this system to exist in any specific state. The most
probable state is then the one with lowest energy. Hence,
minimizing an energy function can be reformulated as the
problem of finding the most probable state of the system it
defines. Let us consider two sets of weighted points, a
source set S1 and a target set S2 equipped with masses m1

and m2, respectively. To solve the OT problem between
those two sets, the “system” is identified with the different
transport plans between S1 and S2 that satisfy the con-
straints of mass balance and positivity. Those plans belong
to a convex polytope denoted as GðS1; S2Þ. Each state
in this system is identified with a transport plan
G ∈ GðS1; S2Þ, and its corresponding energy UðGÞ is
defined in Eq. (1). The probability PðGÞ associated with
a transport plan G is derived a

PðGÞ ¼ 1

ZβðS1; S2Þ
e−βUðGÞ: ð4Þ

In this equation, β ¼ 1=ðkBTÞ where kB is the Boltzmann
constant and T the temperature, and ZβðS1; S2Þ is the
partition function computed over all states of the system.
This partition function is given by

ZβðS1; S2Þ ¼ e−βF βðS1;S2Þ ¼
Z
G∈GðS1;S2Þ

e−βUðGÞdμ12 ð5Þ

where dμ12 can be seen as the Lebesgue measure for the
space of transport plans GðS1; S2Þ and F βðS1; S2Þ is the free
energy of the system.We note first two important properties
of this free energy, namely that F βðS1; S2Þ is symmetric
and satisfies all triangle inequalities if the cost matrix C is
metric, and that it is a monotonically decreasing function of
β that converges to the traditional OT distance WðS1; S2Þ
(see the companion paper [15] for proofs). From those two
properties, it is clear that this formulation of the optimal
transport problem is appealing. It defines a temperature
dependent free energy that satisfies metric properties when
the cost function is metric, with a monotonic dependence
on the temperature, and convergence to the actual OT
distance at zero temperature. It is, unfortunately, of limited
practical interest as the free energy cannot be computed
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explicitly. We propose a scheme for approximating the free
energy using the saddle point approximation.
Taking into account the constraints defined in Eq. (2), the

partition function can be written as

Z¼
Z

1

0

Y
kl

dGkle
−β
P

kl
CklGkl

×
Y
k

δ

�X
l

Gkl −m1ðkÞ
�Y

l

δ

�X
k

Gkl −m2ðlÞ
�
: ð6Þ

We use the Fourier representation of the delta functions,
thereby introducing new auxiliary variables λk and μl, with
k ∈ f1;…; N1g and l ∈ f1;…; N2g, respectively. The
partition function can then be written as (up to a multipli-
cative constant)

Z¼
Z Y

k

dλk

Z Y
l

dμl

Z
1

0

Y
k;l

dGkl

×e
−β
P

k;l
GklðCklþiλkþiμlÞþβ

�P
k
iλkm1ðkÞþ

P
l
iμlm2ðlÞ

�
: ð7Þ

Performing the integration over the variables Gkl, we get,

Z ¼
Z Y

k

dλk

Z Y
l

dμle−βFeffðβ;iλk;iμlÞ ð8Þ

where Feff is a functional, or effective free energy defined
by

Feffðβ; λ; μÞ ¼ −
�X

k

λkm1ðkÞ þ
X
l

μlm2ðlÞ
�

−
1

β

X
kl

ln
�
1 − e−βðCklþλkþμlÞ

βðCkl þ λk þ μlÞ
�
: ð9Þ

Let Ḡkl be the expected value of Gkl with respect to the
Gibbs distribution given in Eq. (4). As mentioned above, it
is unfortunately not possible to compute these expected
values directly as the partition function defined in (8) is not
known analytically. Instead, we derive a saddle point
approximation (SPA) by looking for extrema of the
effective free energy with respect to the variables λ and μ:

∂F effðβ; iλ; iμÞ
∂λk ¼ 0 and

∂F effðβ; iλ; iμÞ
∂μl ¼ 0: ð10Þ

After some rearrangements, those two equations can be
written as

∀ k;
X
l

Ḡkl ¼ m1ðkÞ; ð11aÞ

∀ l;
X
k

Ḡkl ¼ m2ðlÞ; ð11bÞ

where

Ḡkl ¼ ϕ½βðCkl þ iλk þ iμlÞ� ð12Þ

and

ϕðxÞ ¼ e−x

e−x − 1
þ 1

x
: ð13Þ

As is often the case, the saddle point may be purely
imaginary. In the present case, one can easily see from
Eq. (11) that the variables iλk and iμl must be real and in the
following, we will replace fiλk; iμlg by fλk; μlg. We
observe also that Eqs. (9), (11), and (12) are invariant
under the translation fλk þ K; μl − Kg where K is an
arbitrary constant. This translational degree of freedom
leaves the free energy Feff unchanged.
To analyze the SPA, we need to check the existence and

assess the unicity of the critical points of the free energy. In
the companion paper [15], we have shown that the Hessian
of Feffðβ; λ; μÞ is negative semidefinite with ðN1 þ N2 − 1Þ
strictly negative eigenvalues and one zero eigenvalue.
Furthermore, the eigenvector corresponding to the zero
eigenvalue is ð1;…; 1;−1;…: − 1Þ (with N1 1s, and
N2 − 1s), and thus corresponds to the constant translation
invariance of this free energy. Setting one of the parameters
λk or μk to zero, the free energy function on this restricted
parameter space is strictly concave.
For a given value of β, the expected values Ḡkl form a

transport plan Gopt between S1 and S2 that is optimal with
respect to the effective free energy. We can associate to this
transport plan an optimum mean field energy UMF

β ðGoptÞ.
This energy satisfies some important properties. Namely,
for all β > 0 and cost metric matrix C, dβðS1; S2Þ ¼
UMF

β ðGoptÞ is a temperature dependent pseudodistance
between S1 and S2 that satisfies the symmetry and
triangular inequality properties of a metric [it is not a true
distance as dβðS1; S1Þ > 0 for β finite]. Furthermore,
dβðS1; S2Þ is a monotonic decreasing function of the
parameter β that converges to the transport distance
WðS1; S2Þ. The validity of those two assertions is proved
in [15].
The properties of the free energy functional and of the

optimized mean field energy of the system highlight a
number of advantages of the proposed framework. First, at
each temperature the OT problem is turned into a strongly
concave problem with a unique solution. This problem has
a linear complexity in the number of variables. The
concavity allows for the use of simple algorithms for
finding a maximum of the free energy functional
[Eq. (9)]. We have used an iterative Newton method to
solve those equations. In the companion paper [15], we
have shown that these equations can be solved with a time
complexity of Oðn2Þ, thereby making this approach com-
petitive with the entropy regularized OT method. We note
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also that Eq. (12) has better numerical stability than the
operations involved in the Sinkhorn algorithm, even at low
temperatures, because of the ratio of exponentials in the
definition of the function ϕ. Second, the modified problem
defines an optimal pseudodistance at each temperature that
converges to the traditional OT distance when T → 0.
Finally, the convergence as a function of temperature is
monotonic.
We present some computational examples that illustrate

the use of our framework. We used the publicly available
Japanese Female Facial Expression (JAFFE) database
[17,18]. This database comprises 213 images of facial
expressions posed by 10 Japanese female models. We refer
to the images of one of the models as a class. Each class
contains several different poses, namely 6 basic facial
expressions þ1 neutral. We characterized each image by
selecting a set of “key points” using the SURF procedure.
SURF is an image feature detector and descriptor used for
object recognition and image registration [19]. Within
SURF, a key point is a pixel within the image that is
expected to be significant, i.e., a signature feature of the
image. The significance is defined from a local neighbor-
hood of the pixel of interest, characterized by a vector of 64
features. A pair of images is represented with their sets of
key points, S1 and S2; the cost matrix C between those key
points, such thatCkl between a key point k on image 1 and a
key point l on image 2, is equal to the Euclidean distance
between their feature vectors. The masses of the key points
are set uniform. We computed a set of matrices DðβÞ for β
ranging between 1000 and 1010, such that DðβÞðk; lÞ is the
optimized transport energy dβðSk; SlÞ ¼ UMF

β ðGoptÞ, i.e.,

the temperature-based pseudodistance between the sets of
key points Sk and Sl of the images k and l. We also
computed Dð∞Þ, the matrix of distances at convergence.
See Fig. 1 for a graphical representation of Dð∞Þ.
In order to assess the discriminative power contained in

the different matrices DðβÞ, we considered a set of
classification tasks as follows: we randomly selected half
the images from each class to form a training set and used it
for performing a 1-nearest neighbor classification (where
nearest is with respect to the pseudodistance dβ to the
remaining images). By simple comparison between the
class predicted by the classifier and the actual class to
which the image belongs we obtain an estimate for the
probability of correct classification PðβÞ using dβ. We then
repeat this procedure for 10 000 random choices of the
training set. In Fig. 2, we plot PðβÞ as a function of β. Note
that the lower the temperature (or alternatively the higher
the parameter β), the more discriminative the pseudo-
distance dβ. Optimal classification (99.9%), however, is
already obtained for β ¼ 106, i.e., much before conver-
gence to the optimal transport distance, usually reached for
β > 109. This high success rate should be compared to a
success rate of 37% when the Hausdorff distance [20] is
used to compare two images (using the same key point
representation of the image, with the same Euclidean-based
distance between key points).
We have claimed above that the temperature-based OT

method enables a fast and robust solution to the OT
problem. To check that it is indeed the case, we have
compared our implementation of this method, FREEOT,
with our own implementation, ENTROPYOT, of the entropy
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FIG. 1. Optimal transport distance matrix between all images in
the JAFFE facial expression database. The distance Dð∞Þðk; lÞ is
the converged transport energy between the SURF key points of
the two images k and l (see text for details). The different images
for the same model appear closer to each other than to images of
other models. Interestingly Dð∞Þ shows similarity between
models 3, 8, and 10; those are the only 3 models whose hair
covers their ears.
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FIG. 2. Discriminative power of the temperature-based OT
pseudodistances for images in the JAFFE database. The prob-
ability of correct classification using the pseudodistance measure
dβ (see text for details) is plotted against β ¼ 1=T. The solid line
corresponds to the arithmetic means computed over 10000
classification experiments (see text for details). Shaded areas
represent standard deviations.
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regularized approach to the OT problem to compare
images, as described above. ENTROPYOT is based on a
log-domain stabilization and eta-scaling heuristic [14] and
an overrelaxation scheme [21]; both modifications to the
original algorithm of Cuturi [8] are expected to improve
convergence and robustness. We have compared each
image in the JAFFE dataset against five other images that
have similar numbers of key points. Each comparison is
performed until convergence, i.e., until the relative change
in the energy falls below a tolerance of 10−6. Such
convergence is usually reached for β ¼ 1011 (or equiv-
alently for ϵ ¼ 10−11 for ENTROPYOT). The computing
times for FREEOT and ENTROPYOT, averaged over the 5
comparisons, are plotted against the number of key points
in the images in Fig. 3. With only a few exceptions,
FREEOT is always found to be faster than ENTROPYOT, as
the latter is found to slow down significantly for very small
ϵ values. While convergence with high precision may not
be needed, we observe that FREEOT is free of those
convergence problems. Both FREEOT and ENTROPYOT
include a scaling of the regularization parameter. For
FREEOT, the values of the converged parameters λ and μ
at one value of β are used as input to the next value of β
considered. This is expected to improve convergence. To
check if this is true, we repeated the calculations with
FREEOT by resetting λ and μ to zero for each β value. The
results are shown in Fig. 3, as FREEOT (reset). The reset
does lead to less efficient convergence. Of significance,
however, the computations remain feasible, even for very
large β values. In contrast, similar experiments with
ENTROPYOT failed for most image comparisons, due to
numerical instabilities for ϵ < 10−5.
In summary, we have used statistical physics to derive an

alternative representation of the discrete optimal transport
problem. We have constructed a strongly concave effective
free energy function that captures the constraints of the

OT problem. This effective free energy function is para-
metrized by temperature. Its maximum defines an optimal
transport plan as well as a pseudodistance between the two
sets of points considered. In the companion paper [15], we
have shown that this formalism can be implemented in an
algorithm with the same time complexity as those of the
implementations of the regularized OT algorithms in time
complexity, making it a competitive approach to solving the
OT problem and therefore amenable to applications in data
sciences. In addition, the temperature dependent OT
pseudodistance is shown to decrease monotonically with
respect to the parameter β to the standard optimal transport
or Wasserstein distance, thereby providing a robust frame-
work for temperature annealing, a process that is still
elusive for the entropy regularized optimal transport pro-
blem. Addressing issues of partial transport, as well as
extensions to other transport problems such as the compu-
tation of the Gromov-Wasserstein distance [22] are pro-
mising directions for future work.

The work discussed here originated from a visit by P. K.
at the Institut de Physique Théorique, CEA Saclay, France.
He thanks them for their hospitality and financial support.
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