K. Ella, R. Csepanyi-komi, and K. Kaldi, Circadian regulation of human peripheral neutrophils, Brain Behav Immun, vol.57, pp.209-210, 2016.

J. M. Adrover, D. Fresno, C. Crainiciuc, G. Cuartero, M. I. Casanova-acebes et al., A neutrophil timer coordinates immune defense and vascular protection, Immunity, pp.50390-402, 2019.

B. Jilma, N. Hergovich, P. Stohlawetz, H. G. Eichler, P. Bauer et al., Circadian variation of granulocyte colony stimulating factor levels in man

, Br J Haematol, vol.106, pp.368-70, 1999.

T. M. Fliedner, E. P. Cronkite, S. A. Killmann, and V. P. Bond, Granulocytopoiesis. II. emergence and pattern of labeling of neutrophilic granulocytes in humans, Blood, vol.24, pp.683-700, 1964.

J. Pillay, I. Den-braber, N. Vrisekoop, L. M. Kwast, R. J. De-boer et al., In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days, Blood, vol.116, pp.625-632, 2010.

C. Martin, P. C. Burdon, G. Bridger, J. C. Gutierrez-ramos, T. J. Williams et al., Chemokines acting via. CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence, Immunity, vol.19, pp.583-93, 2003.

R. C. Furze and S. M. Rankin, Neutrophil mobilization and clearance in the bone marrow, Immunology, vol.125, pp.281-289, 2008.

F. Jonsson, L. De-chaisemartin, V. Granger, A. Gouel-cheron, C. M. Gillis et al., An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis, Sci Transl Med, vol.11, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02294649

C. Yin and B. Heit, Armed for destruction: formation, function and trafficking of neutrophil granules, Cell Tissue Res, vol.371, pp.455-71, 2018.

P. Bruhns, B. Iannascoli, P. England, D. A. Mancardi, N. Fernandez et al., Specificity and affinity of human Fc{gamma} receptors and their polymorphic variants for human IgG subclasses, Blood, vol.113, pp.3716-3741, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00363931

M. Daëron, Fc receptor biology, Annu Rev Immunol, vol.15, pp.203-237, 1997.

F. Nimmerjahn and J. V. Ravetch, Fcgamma receptors as regulators of immune responses, Nat Rev Immunol, vol.8, pp.34-47, 2008.

U. Blank, P. Launay, M. Benhamou, and R. C. Monteiro, Inhibitory ITAMs as novel regulators of immunity, Immunol Rev, vol.232, pp.59-71, 2009.

M. Ono, S. Bolland, P. Tempst, and J. V. Ravetch, Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB, Nature, vol.383, pp.263-269, 1996.

S. Amigorena, C. Bonnerot, J. R. Drake, D. Choquet, W. Hunziker et al., Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes, Science, vol.256, pp.1808-1820, 1992.

O. Malbec, D. C. Fong, M. Turner, V. L. Tybulewicz, J. C. Cambier et al., Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation, J Immunol, vol.160, pp.1647-58, 1998.

O. Malbec, L. Cassard, M. Albanesi, F. Jonsson, D. Mancardi et al., Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils, Sci Signal, vol.9, p.126, 2016.

H. B. Fleit, S. D. Wright, and J. C. Unkeless, Human neutrophil Fc gamma receptor distribution and structure, Proc Natl Acad Sci, vol.79, pp.3275-3284, 1982.

M. W. Fanger, L. Shen, R. F. Graziano, and P. M. Guyre, Cytotoxicity mediated by human Fc receptors for IgG, Immunol Today, vol.10, pp.92-101, 1989.

M. J. Fernandes, E. Rollet-labelle, G. Pare, S. Marois, M. L. Tremblay et al., CD16b associates with high-density, detergent-resistant membranes in human neutrophils, Biochem J, pp.351-360, 2006.

C. R. Jost, T. W. Huizinga, R. De-goede, J. A. Fransen, P. A. Tetteroo et al., Intracellular localization and de novo synthesis of FcRIII in human neutrophil granulocytes, Blood, vol.75, pp.144-51, 1990.

M. F. Tosi and H. Zakem, Surface expression of Fc gamma receptor III (CD16) on chemoattractant-stimulated neutrophils is determined by both surface shedding and translocation from intracellular storage compartments, J Clin Invest, vol.90, pp.462-70, 1992.

T. W. Huizinga, K. M. Dolman, N. J. Van-der-linden, M. Kleijer, J. H. Nuijens et al., Phosphatidylinositol-linked FcRIII mediates exocytosis of neutrophil granule proteins, but does not mediate initiation of the respiratory burst, J Immunol, vol.144, pp.1432-1439, 1990.

R. P. Kimberly, J. W. Ahlstrom, M. E. Click, and J. C. Edberg, The glycosyl phosphatidylinositol-linked Fc gamma RIIIPMN mediates transmembrane signaling events distinct from Fc gamma RII, J Exp Med, vol.171, pp.1239-55, 1990.

M. Kocher, M. E. Siegel, J. C. Edberg, and R. P. Kimberly, Cross-linking of Fc gamma receptor IIa and Fc gamma receptor IIIb induces different proadhesive phenotypes on human neutrophils, J Immunol, vol.159, pp.3940-3948, 1997.

A. Coxon, X. Cullere, S. Knight, S. Sethi, M. W. Wakelin et al., Fc gamma RIII mediates neutrophil recruitment to immune complexes. A mechanism for neutrophil accumulation in immune-mediated inflammation, Immunity, vol.14, pp.693-704, 2001.

K. Chen, H. Nishi, R. Travers, N. Tsuboi, K. Martinod et al., Endocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivo, Blood, vol.120, pp.4421-4452, 2012.

E. Garcia-garcia, G. Nieto-castaneda, M. Ruiz-saldana, N. Mora, and C. Rosales, FcgammaRIIA and FcgammaRIIIB mediate nuclear factor activation through separate signaling pathways in human neutrophils, J Immunol, vol.182, pp.4547-56, 2009.

M. A. Lindorfer, . Kj, and R. P. Taylor, Interactions between the complement system and Fc? receptors, Antibody Fc: Linking Adaptive and Innate Immunity, pp.49-74, 2014.

M. J. Zhou, D. M. Lublin, D. C. Link, and E. J. Brown, Distinct tyrosine kinase activation and Triton X-100 insolubility upon Fc gamma RII or Fc gamma RIIIB ligation in human polymorphonuclear leukocytes. implications for immune complex activation of the respiratory burst, J Biol Chem, vol.270, pp.13553-60, 1995.

P. Y. Coxon, M. J. Rane, D. W. Powell, J. B. Klein, and K. R. Mcleish, Differential mitogen-activated protein kinase stimulation by Fc gamma receptor IIa and Fc gamma receptor IIIb determines the activation phenotype of human neutrophils, J Immunol, vol.164, pp.6530-6537, 2000.

I. Hazan-halevy, R. Seger, and R. Levy, The requirement of both extracellular regulated kinase and p38 mitogen-activated protein kinase for stimulation of cytosolic phospholipase A(2) activity by either FcgammaRIIA or FcgammaRIIIB in human neutrophils. A possible role for Pyk2 but not for the Grb2-Sos-Shc complex, J Biol Chem, vol.275, pp.12416-12439, 2000.

P. J. Vossebeld, C. H. Homburg, D. Roos, and A. J. Verhoeven, The anti-Fc gamma RIII mAb 3G8 induces neutrophil activation via a cooperative actin of Fc gamma RIIIb and Fc gamma RIIa, Int J Biochem Cell Biol, vol.29, pp.465-73, 1997.

T. W. Huizinga, M. De-haas, M. Kleijer, J. H. Nuijens, D. Roos et al., Soluble Fc gamma receptor III in human plasma originates from release by neutrophils, J Clin Invest, vol.86, pp.416-439, 1990.

I. Dransfield, A. M. Buckle, J. S. Savill, A. Mcdowall, C. Haslett et al., Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression, J Immunol, vol.153, pp.1254-63, 1994.

J. L. Teillaud, C. Bouchard, A. Astier, C. Teillaud, E. Tartour et al., Natural and recombinant soluble low-affinity Fc gamma R: detection, purification, and functional activities, Immunomethods, vol.4, pp.48-64, 1994.

M. E. Esposito-farese, C. Sautes, H. De-la-salle, S. Latour, T. Bieber et al., Membrane and soluble Fc gamma RII/III modulate the antigenpresenting capacity of murine dendritic epidermal Langerhans cells for IgG-complexed antigens, J Immunol, vol.155, pp.1725-1761, 1995.

J. Galon, J. F. Gauchat, N. Mazieres, R. Spagnoli, W. Storkus et al., Soluble Fcgamma receptor type III (FcgammaRIII, CD16) triggers cell activation through interaction with complement receptors, J Immunol, vol.157, pp.1184-92, 1996.

S. Nagarajan, K. Venkiteswaran, M. Anderson, U. Sayed, C. Zhu et al., Cell-specific, activation-dependent regulation of neutrophil CD32A ligandbinding function, Blood, vol.95, pp.1069-77, 2000.

G. Saggu, K. Okubo, Y. Chen, R. Vattepu, N. Tsuboi et al., Cis interaction between sialylated FcgammaRIIA and the alphaI-domain of Mac-1 limits antibody-mediated neutrophil recruitment, Nat Commun, vol.9, p.5058, 2018.

E. Crockett-torabi and J. C. Fantone, Soluble and insoluble immune complexes activate human neutrophil NADPH oxidase by distinct Fc gamma receptorspecific mechanisms, J Immunol, vol.145, pp.3026-3058, 1990.

R. G. Bredius, C. A. Fijen, D. Haas, M. Kuijper, E. J. Weening et al., Role of neutrophil Fc gamma RIIa (CD32) and Fc gamma RIIIb (CD16) polymorphic forms in phagocytosis of human IgG1-and IgG3-opsonized bacteria and erythrocytes, Immunology, vol.83, pp.624-654, 1994.

J. C. Unkeless, Z. Shen, C. W. Lin, and E. Debeus, Function of human Fc gamma RIIA and Fc gamma RIIIB, Semin Immunol, vol.7, pp.90006-90009, 1995.

N. Tsuboi, K. Asano, M. Lauterbach, and T. N. Mayadas, Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases, Immunity, vol.28, pp.833-879, 2008.

C. Zyntek, J. Schmitz, and G. Winkels, Untouched isolation of functionally unaffected neutrophils from whole blood within 20 minutes, Front Immunol, vol.2, p.621, 2013.

F. Calzetti, N. Tamassia, F. Arruda-silva, S. Gasperini, and M. A. Cassatella, The importance of being "pure" neutrophils, J Allergy Clin Immunol, vol.139, pp.352-357, 2017.

W. L. Akerley, P. M. Guyre, and B. H. Davis, Neutrophil activation through high-affinity Fc gamma receptor using a monomeric antibody with unique properties, Blood, vol.77, pp.607-622, 1991.

B. Perussia, E. T. Dayton, L. R. Fanning, V. Trinchieri, and G. , Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells, J Exp Med, vol.158, pp.1092-113, 1983.

D. E. Schiff, R. J. Martin, T. R. Davis, B. H. Curnutte, and J. T. , Increased phagocyte Fc gammaRI expression and improved Fc gamma-receptor-mediated phagocytosis after in vivo recombinant human interferon-gamma treatment of normal human subjects, Blood, vol.90, pp.3187-94, 1997.

K. Su, H. Yang, X. Li, X. Li, A. W. Gibson et al., Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus, J Immunol, vol.178, pp.3272-80, 2007.

J. Golay, R. Valgardsdottir, G. Musaraj, D. Giupponi, O. Spinelli et al., Human neutrophils express low levels of FcgammaRIIIA, which plays a role in PMN activation, Blood, vol.133, pp.1395-405, 2019.

P. Bruhns and F. Jonsson, Mouse and human FcR effector functions, Immunol Rev, vol.268, pp.25-51, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01281740

M. Hundt, J. Schubert, M. De-haas, M. Zielinska-skowronek, and R. E. Schmidt, The loss of Fc gamma RIIIb in paroxysmal nocturnal hemoglobinuria is functionally replaced by Fc gamma RII, Blood, vol.83, pp.3574-80, 1994.

P. M. Guyre, A. S. Campbell, W. D. Kniffin, and M. W. Fanger, Monocytes and polymorphonuclear neutrophils of patients with streptococcal pharyngitis express increased numbers of type I IgG Fc receptors, J Clin Invest, vol.86, pp.1892-1898, 1990.

R. Repp, T. Valerius, A. Sendler, M. Gramatzki, H. Iro et al., Neutrophils express the high affinity receptor for IgG (Fc gamma RI, CD64) after in vivo application of recombinant human granulocyte colonystimulating factor, Blood, vol.78, pp.885-894, 1991.

E. Roilides, A. Holmes, C. Blake, P. A. Pizzo, and T. J. Walsh, Effects of granulocyte colony-stimulating factor and interferon-gamma on antifungal activity of human polymorphonuclear neutrophils against pseudohyphae of different medically important Candida species, J Leukoc Biol, vol.57, pp.651-657, 1995.

B. H. Davis and N. C. Bigelow, Comparison of neutrophil CD64 expression, manual myeloid immaturity counts, and automated hematology analyzer flags as indicators of infection or sepsis, Lab Hematol, vol.11, pp.137-184, 2005.

E. Layseca-espinosa, L. F. Perez-gonzalez, A. Torres-montes, L. Baranda, H. De-la-fuente et al., Expression of CD64 as a potential marker of neonatal sepsis, Pediatr Allergy Immunol, vol.13, pp.319-346, 2002.

P. C. Ng, K. Li, R. P. Wong, K. M. Chui, E. Wong et al., Neutrophil CD64 expression: a sensitive diagnostic marker for late-onset nosocomial infection in very low birthweight infants, Pediatr Res, vol.51, pp.296-303, 2002.

J. C. Strohmeyer, C. Blume, C. Meisel, W. D. Doecke, M. Hummel et al., Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients, Cytometry B Clin Cytom, vol.53, pp.54-62, 2003.

S. H. Song, H. K. Kim, M. H. Park, and H. I. Cho, Neutrophil CD64 expression is associated with severity and prognosis of disseminated intravascular coagulation, Thromb Res, vol.121, pp.499-507, 2008.

P. Minar, K. Jackson, Y. T. Tsai, M. J. Rosen, M. Northcutt et al., A low neutrophil CD64 index is associated with sustained remission during infliximab maintenance therapy, Inflamm Bowel Dis, vol.22, pp.2641-2648, 2016.

A. Dimoula, O. Pradier, Z. Kassengera, D. Dalcomune, H. Turkan et al., Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients, Clin Infect Dis, vol.58, pp.820-829, 2014.

O. Livaditi, A. Kotanidou, A. Psarra, I. Dimopoulou, C. Sotiropoulou et al., Neutrophil CD64 expression and serum IL-8: sensitive early markers of severity and outcome in sepsis, Cytokine, vol.36, pp.283-90, 2006.

L. Y. Gamez-diaz, L. E. Enriquez, J. D. Matute, S. Velasquez, I. D. Gomez et al., Diagnostic accuracy of HMGB-1, sTREM-1, and CD64 as markers of sepsis in patients recently admitted to the emergency department, Acad Emerg Med, vol.18, pp.807-822, 2011.

A. Gros, M. Roussel, E. Sauvadet, A. Gacouin, S. Marque et al., The sensitivity of neutrophil CD64 expression as a biomarker of bacterial infection is low in critically ill patients, Intensive Care Med, vol.38, pp.445-52, 2012.

S. T. Dal-ponte, A. P. Alegretti, D. A. Pilger, G. P. Rezende, G. Andrioli et al., Diagnostic accuracy of CD64 for sepsis in emergency department, J Glob Infect Dis, vol.10, pp.42-48, 2018.

J. Cid, R. Aguinaco, R. Sanchez, G. Garcia-pardo, and A. Llorente, Neutrophil CD64 expression as marker of bacterial infection: a systematic review and meta-analysis, J Infect, vol.60, pp.313-322, 2010.

S. Li, X. Huang, Z. Chen, H. Zhong, Q. Peng et al., Neutrophil CD64 expression as a biomarker in the early diagnosis of bacterial infection: a metaanalysis, Int J Infect Dis, vol.17, pp.12-23, 2013.

B. Gyawali, K. Ramakrishna, and A. S. Dhamoon, Sepsis: the evolution in definition, pathophysiology, and management, SAGE Open Med, vol.7, pp.1-13, 2019.

J. Van-der-heijden, S. Nagelkerke, X. Zhao, J. Geissler, T. Rispens et al., Haplotypes of FcgammaRIIa and FcgammaRIIIb polymorphic variants influence IgG-mediated responses in neutrophils, J Immunol, vol.192, pp.2715-2736, 2014.

K. Belostocki, M. S. Park, P. B. Redecha, E. Masuda, J. E. Salmon et al., FcgammaRIIa is a target for modulation by TNFalpha in human neutrophils, Clin Immunol, vol.117, pp.78-86, 2005.

G. Fossati, R. C. Bucknall, and S. W. Edwards, Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: changes in functional responses induced by priming with cytokines, Ann Rheum Dis, vol.61, pp.13-22, 2002.

M. Lauterbach, P. O'donnell, K. Asano, and T. N. Mayadas, Role of TNF priming and adhesion molecules in neutrophil recruitment to intravascular immune complexes, J Leukoc Biol, vol.83, pp.1423-1453, 2008.

S. Higurashi, Y. Machino, E. Suzuki, M. Suzuki, J. Kohroki et al., Both the Fab and Fc domains of IgG are essential for ROS emission from TNFalpha-primed neutrophils by IVIG, Biochem Biophys Res Commun, vol.417, pp.794-803, 2012.

F. Jönsson, D. A. Mancardi, W. Zhao, Y. Kita, B. Iannascoli et al., Human FcgammaRIIA induces anaphylactic and allergic reactions, Blood, vol.119, pp.2533-2577, 2012.

J. Suurmond and B. Diamond, Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity, J Clin Invest, vol.125, pp.2194-202, 2015.

T. N. Mayadas, G. C. Tsokos, and N. Tsuboi, Mechanisms of immune complexmediated neutrophil recruitment and tissue injury, Circulation, vol.120, pp.2012-2016, 2009.

S. Q. Nagelkerke, C. E. Tacke, W. B. Breunis, M. Tanck, J. Geissler et al., Extensive ethnic variation and linkage disequilibrium at the FCGR2/3 locus: different genetic associations revealed in Kawasaki disease, Front Immunol, vol.10, p.185, 2019.

P. A. Warmerdam, J. G. Van-de-winkel, E. J. Gosselin, and P. J. Capel, Molecular basis for a polymorphism of human Fc gamma receptor II (CD32), J Exp Med, vol.172, pp.19-25, 1990.

A. J. Duits, H. Bootsma, R. H. Derksen, P. E. Spronk, L. Kater et al., Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients, Arthritis Rheum, vol.38, pp.1832-1838, 1995.

L. A. Haseley, J. J. Wisnieski, M. R. Denburg, A. R. Michael-grossman, E. M. Ginzler et al., Antibodies to C1q in systemic lupus erythematosus: characteristics and relation to Fc gamma RIIA alleles, Kidney Int, vol.52, pp.1375-80, 1997.

Y. Williams, S. Lynch, S. Mccann, O. Smith, C. Feighery et al., Correlation of platelet Fc?RIIA polymorphism in refractory idiopathic (immune) thrombocytopenic purpura, Br J Haematol, vol.101, pp.779-82, 1998.

K. Myhr, G. Raknes, H. Nyland, and C. Vedeler, Immunoglobulin G Fc-receptor (Fc?R) IIA and IIIB polymorphisms related to disability in MS, Neurology, vol.52, p.1771, 1999.

F. B. Karassa, M. Bijl, K. A. Davies, C. Kallenberg, M. A. Khamashta et al., Role of the Fc? receptor IIA polymorphism in the antiphospholipid syndrome: an international meta-analysis, Arthritis Rheum, vol.48, pp.1930-1938, 2003.

L. A. Sanders, J. G. Van-de-winkel, G. T. Rijkers, M. M. Voorhorst-ogink, M. De-haas et al., Fc gamma receptor IIa (CD32) heterogeneity in patients with recurrent bacterial respiratory tract infections, J Infect Dis, vol.170, pp.854-61, 1994.

G. Raknes, G. O. Skeie, N. E. Gilhus, S. Aadland, and C. Vedeler, Fc?RIIA and Fc?RIIIB polymorphisms in myasthenia gravis, J Neuroimmunol, vol.81, pp.173-179, 1998.

C. C. Khor, S. Davila, W. B. Breunis, Y. Lee, C. Shimizu et al.,

J. Van-der-heijden, J. Geissler, E. Van-mirre, M. Van-deuren, J. W. Van-der-meer et al., A novel splice variant of FcgammaRIIa: a risk factor for anaphylaxis in patients with hypogammaglobulinemia, Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease, vol.43, pp.1311408-1416, 2011.

J. C. Anania, H. M. Trist, C. S. Palmer, P. S. Tan, B. P. Kouskousis et al., The rare anaphylaxis-associated FcgammaRIIa3 exhibits distinct characteristics from the canonical FcgammaRIIa1, Front Immunol, vol.9, p.1809, 2018.

K. Su, J. Wu, J. C. Edberg, X. Li, P. Ferguson et al., A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus, J Immunol, vol.172, pp.7186-91, 2004.

K. Su, X. Li, J. C. Edberg, J. Wu, P. Ferguson et al., A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II. differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function, J Immunol, vol.172, pp.7192-7201, 2004.

R. A. Floto, M. R. Clatworthy, K. R. Heilbronn, D. R. Rosner, P. A. Macary et al., Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts, Nat Med, vol.11, pp.1056-1064, 2005.

J. Bux, E. L. Stein, P. Bierling, P. Fromont, M. Clay et al., Characterization of a new alloantigen (SH) on the human neutrophil Fc gamma receptor IIIb, Blood, vol.89, pp.1027-1061, 1997.

J. E. Salmon, J. C. Edberg, and R. P. Kimberly, Allelic variants have functionally distinct capacities, J Clin Invest, vol.85, pp.1287-95, 1990.

S. Shrestha, H. Wiener, A. Shendre, R. A. Kaslow, J. Wu et al., Role of activating FcgammaR gene polymorphisms in Kawasaki disease susceptibility and intravenous immunoglobulin response, Circ Cardiovasc Genet, vol.5, pp.309-325, 2012.

H. R. Koene, M. Kleijer, D. Roos, and M. De-haas, Von dem Borne AE. Fc gamma RIIIB gene duplication: evidence for presence and expression of three distinct Fc gamma RIIIB genes in NA(1+,2+)SH(+) individuals, Blood, vol.91, pp.673-682, 1998.

J. Lejeune, G. Thibault, D. Ternant, G. Cartron, H. Watier et al., Evidence for linkage disequilibrium between Fcgamma RIIIa-V158F and Fcgamma RIIa-H131R polymorphisms in white patients, and for an Fcgamma RIIIa-restricted influence on the response to therapeutic antibodies, J Clin Oncol, vol.26, pp.5489-91, 2008.

W. B. Breunis, E. Van-mirre, M. Bruin, J. Geissler, M. De-boer et al., Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura, Blood, vol.111, pp.1029-1067, 2008.

J. D. Mellor, M. P. Brown, H. R. Irving, J. R. Zalcberg, and A. Dobrovic, A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer, J Hematol Oncol, vol.6, p.1, 2013.

S. Q. Nagelkerke, C. E. Tacke, W. B. Breunis, J. Geissler, J. W. Sins et al., Nonallelic homologous recombination of the FCGR2/3 locus results in copy number variation and novel chimeric FCGR2 genes with aberrant functional expression, Genes Immun, vol.16, pp.422-431, 2015.

M. De-haas, M. Kleijer, R. Van-zwieten, D. Roos, V. Dem-borne et al., Neutrophil Fc gamma RIIIb deficiency, nature, and clinical consequences: a study of 21 individuals from 14 families, Blood, vol.86, pp.2403-2416, 1995.

M. Fanciulli, P. J. Norsworthy, E. Petretto, R. Dong, L. Harper et al., FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity, Nat Genet, vol.39, pp.721-724, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00173649

S. Bournazos, I. Bournazou, J. T. Murchison, W. A. Wallace, P. Mcfarlane et al., Copy number variation of FCGR3B is associated with susceptibility to idiopathic pulmonary fibrosis, Respiration, vol.81, pp.142-151, 2011.

S. W. Graf, S. Lester, J. C. Nossent, C. L. Hill, S. M. Proudman et al., Low copy number of the FCGR3B gene and rheumatoid arthritis: a case-control study and meta-analysis, Arthritis Res Ther, vol.14, p.28, 2012.

C. Mckinney, J. C. Broen, M. C. Vonk, L. Beretta, R. Hesselstrand et al., Evidence that deletion at FCGR3B is a risk factor for systemic sclerosis, Genes Immun, vol.13, pp.458-60, 2012.

H. A. Niederer, L. C. Willcocks, T. F. Rayner, W. Yang, Y. L. Lau et al., Copy number, linkage disequilibrium and disease association in the FCGR locus, Hum Mol Genet, vol.19, pp.3282-94, 2010.

F. B. Barbosa, M. Simioni, C. Wiezel, F. R. Torres, M. C. Molck et al., Copy number variation in the susceptibility to systemic lupus erythematosus, PLoS ONE, vol.13, p.206683, 2018.

Y. H. Lee, S. C. Bae, Y. H. Seo, J. H. Kim, S. J. Choi et al., Association between FCGR3B copy number variations and susceptibility to autoimmune diseases: A meta-analysis, Inflamm Res, vol.64, pp.983-984, 2015.

X. W. Zhu, Y. Wang, Y. H. Wei, P. P. Zhao, X. B. Wang et al., Comprehensive assessment of the association between FCGRs polymorphisms and the risk of systemic lupus erythematosus: evidence from a meta-analysis, Sci Rep, vol.6, p.31617, 2016.

M. R. Clark, L. Liu, S. B. Clarkson, P. A. Ory, and I. M. Goldstein, An abnormality of the gene that encodes neutrophil Fc receptor III in a patient with systemic lupus erythematosus, J Clin Invest, vol.86, pp.341-347, 1990.

X. Li, T. S. Ptacek, E. E. Brown, and J. C. Edberg, Fcgamma receptors: Structure, function and role as genetic risk factors in SLE, Genes Immun, vol.10, pp.380-389, 2009.

E. Patin, M. Hasan, J. Bergstedt, V. Rouilly, V. Libri et al., Publisher correction: natural variation in the parameters of innate immune cells is preferentially driven by genetic factors, Nat Immunol, vol.19, p.645, 2018.

M. Daëron, S. Latour, O. Malbec, E. Espinosa, P. Pina et al., The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation, Immunity, vol.3, pp.635-681, 1995.

J. V. Ravetch and S. Bolland, IgG Fc receptors, Annu Rev Immunol, vol.19, pp.275-90, 2001.

G. P. Subedi and A. W. Barb, The structural role of antibody Nglycosylation in receptor interactions, Structure, vol.23, pp.1573-83, 2015.

G. P. Subedi and A. W. Barb, The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc gamma receptor, MAbs, vol.8, pp.1512-1536, 2016.

T. Li, D. J. Dilillo, S. Bournazos, J. P. Giddens, J. V. Ravetch et al., Modulating IgG effector function by Fc glycan engineering, Proc Natl Acad Sci, vol.114, pp.3485-90, 2017.

R. Jefferis, Glycosylation of recombinant antibody therapeutics, Biotechnol Prog, vol.21, pp.11-17, 2005.

R. Jefferis, Glycosylation as a strategy to improve antibody-based therapeutics, Nat Rev Drug Discov, vol.8, pp.226-260, 2009.

R. L. Shields, J. Lai, R. Keck, L. Y. O'connell, K. Hong et al., Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity, J Biol Chem, vol.277, pp.26733-26773, 2002.

A. Okazaki, E. Shoji-hosaka, K. Nakamura, M. Wakitani, K. Uchida et al., Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa, J Mol Biol, vol.336, pp.1239-1288, 2004.

C. Ferrara, S. Grau, C. Jager, P. Sondermann, P. Brunker et al., Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose, Proc Natl Acad Sci, vol.108, pp.12669-74, 2011.

J. Golay, F. Da-roit, L. Bologna, C. Ferrara, J. H. Leusen et al., Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab, Blood, vol.122, pp.3482-91, 2013.

V. Reddy, C. Klein, D. A. Isenberg, M. J. Glennie, G. Cambridge et al., Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples, Rheumatology (Oxford), vol.56, pp.1227-1264, 2017.

L. W. Treffers, M. Van-houdt, C. W. Bruggeman, M. H. Heineke, X. W. Zhao et al., FcgammaRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils, Front Immunol, vol.9, p.3124, 2018.

B. J. Scallon, S. H. Tam, S. G. Mccarthy, A. N. Cai, and T. S. Raju, Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality, Mol Immunol, vol.44, pp.1524-1558, 2007.

S. Rantapaa-dahlqvist, B. A. De-jong, E. Berglin, G. Hallmans, G. Wadell et al., Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis, Arthritis Rheum, vol.48, pp.2741-2750, 2003.

M. M. Nielen, D. Van-schaardenburg, H. W. Reesink, R. J. Van-de-stadt, I. E. Van-der-horst-bruinsma et al., Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors, Arthritis Rheum, vol.50, pp.380-386, 2004.

L. D. Heinlen, M. T. Mcclain, J. Merrill, Y. W. Akbarali, C. C. Edgerton et al., Clinical criteria for systemic lupus erythematosus precede diagnosis, and associated autoantibodies are present before clinical symptoms, Arthritis Rheum, vol.56, pp.2344-51, 2007.

U. Harre, S. C. Lang, R. Pfeifle, Y. Rombouts, S. Fruhbeisser et al., Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss, Nat Commun, vol.6, p.6651, 2015.

Y. Rombouts, E. Ewing, L. A. Van-de-stadt, M. H. Selman, L. A. Trouw et al., Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis, Ann Rheum Dis, vol.74, pp.234-275, 2015.

J. D. Pagan, M. Kitaoka, and R. M. Anthony, Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease, Cell, pp.172564-577, 2018.

T. Tang, A. Rosenkranz, K. J. Assmann, M. J. Goodman, J. C. Gutierrez-ramos et al., A role for Mac-1 (CDIIb/CD18) in immune complexstimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complementdependent proteinuria in acute glomerulonephritis, J Exp Med, vol.186, pp.1853-63, 1997.

S. K. Nath, S. Han, X. Kim-howard, J. A. Kelly, P. Viswanathan et al., A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus, Nat Genet, vol.40, pp.152-156, 2008.

E. Sl-jones and . Landes, Functional Cooperation Between Fcg Receptors and Complement Receptors in Phagocytes, 1996.

Y. Alvarez, X. Tang, J. E. Coligan, and F. Borrego, The CD300a (IRp60) inhibitory receptor is rapidly up-regulated on human neutrophils in response to inflammatory stimuli and modulates CD32a (FcgammaRIIa) mediated signaling, Mol Immunol, vol.45, pp.253-261, 2008.

D. Bharadwaj, M. P. Stein, M. Volzer, and C. Mold, Du Clos TW. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II, J Exp Med, vol.190, pp.585-90, 1999.

D. Bharadwaj, C. Mold, E. Markham, D. Clos, and T. W. , Serum amyloid P component binds to Fc gamma receptors and opsonizes particles for phagocytosis, J Immunol, vol.166, pp.6735-6776, 2001.

M. P. Stein, J. C. Edberg, R. P. Kimberly, E. K. Mangan, D. Bharadwaj et al., C-reactive protein binding to FcgammaRIIa on human monocytes and neutrophils is allele-specific, J Clin Invest, vol.105, pp.369-76, 2000.

J. M. Zeller, B. M. Kubak, and H. Gewurz, Binding sites for C-reactive protein on human monocytes are distinct from IgG Fc receptors, Immunology, vol.67, pp.51-56, 1989.

N. Cox, D. Pilling, and R. H. Gomer, Distinct Fcgamma receptors mediate the effect of serum amyloid p on neutrophil adhesion and fibrocyte differentiation, J Immunol, vol.193, pp.1701-1709, 2014.

J. Galon, I. Moldovan, A. Galinha, M. A. Provost-marloie, H. Kaudewitz et al., Identification of the cleavage site involved in production of plasma soluble Fc gamma receptor type III (CD16), Eur J Immunol, vol.28, pp.2101-2108, 1998.

Y. Wang, J. Wu, R. Newton, N. S. Bahaie, C. Long et al., ADAM17 cleaves CD16b (FcgammaRIIIb) in human neutrophils, Biochim Biophys Acta, vol.1833, pp.680-685, 2013.

B. Walcheck, A. H. Herrera, . St, C. Hill, P. E. Mattila et al., ADAM17 activity during human neutrophil activation and apoptosis, Eur J Immunol, vol.36, pp.968-76, 2006.

Y. Wang, J. D. Robertson, and B. Walcheck, Different signaling pathways stimulate a disintegrin and metalloprotease-17 (ADAM17) in neutrophils during apoptosis and activation, J Biol Chem, vol.286, pp.38980-38988, 2011.

D. C. Blaydon, P. Biancheri, W. L. Di, V. Plagnol, R. M. Cabral et al., Inflammatory skin and bowel disease linked to ADAM17 deletion, N Engl J Med, vol.365, pp.1502-1510, 2011.

R. H. Bandsma, H. Van-goor, M. Yourshaw, R. K. Horlings, M. F. Jonkman et al., Loss of ADAM17 is associated with severe multiorgan dysfunction, Hum Pathol, vol.46, pp.923-931, 2015.

C. De-la-salle, M. E. Esposito-farese, T. Bieber, J. Moncuit, M. Morales et al., Release of soluble Fc gamma RII/CD32 molecules by human langerhans cells: a subtle balance between shedding and secretion?, J Invest Dermatol, vol.99, 1992.

C. Lood, S. Arve, J. Ledbetter, and K. B. Elkon, TLR7/8 activation in neutrophils impairs immune complex phagocytosis through shedding of FcgRIIA, J Exp Med, vol.214, pp.2103-2122, 2017.

N. Branzk, A. Lubojemska, S. E. Hardison, Q. Wang, M. G. Gutierrez et al., Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens, Nat Immunol, vol.15, pp.1017-1042, 2014.

M. F. Denny, S. Yalavarthi, W. Zhao, S. G. Thacker, M. Anderson et al., A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs, J Immunol, vol.184, pp.3284-97, 2010.

M. J. Kaplan, Neutrophils in the pathogenesis and manifestations of SLE, Nat Rev Rheumatol, vol.7, pp.691-700, 2011.

P. Selvaraj, N. Fifadara, S. Nagarajan, A. Cimino, and G. Wang, Functional regulation of human neutrophil Fc gamma receptors, Immunol Res, vol.29, pp.219-249, 2004.

P. A. Ramsland, W. Farrugia, T. M. Bradford, C. T. Sardjono, S. Esparon et al., Structural basis for Fc gammaRIIa recognition of human IgG and formation of inflammatory signaling complexes, J Immunol, vol.187, pp.3208-3225, 2011.

P. Scapini, B. Nardelli, G. Nadali, F. Calzetti, G. Pizzolo et al., G-CSF-stimulated neutrophils are a prominent source of functional BLyS, J Exp Med, vol.197, pp.297-302, 2003.

P. Scapini, F. Bazzoni, and M. A. Cassatella, Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils, Immunol Lett, vol.116, pp.1-6, 2008.

R. Parsa, H. Lund, A. M. Georgoudaki, X. M. Zhang, O. Guerreiro-cacais et al., BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis, J Exp Med, vol.213, pp.1537-53, 2016.

M. B. Litinskiy, B. Nardelli, D. M. Hilbert, B. He, A. Schaffer et al., DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL, Nat Immunol, vol.3, pp.822-831, 2002.

U. Salzer, C. Neumann, J. Thiel, C. Woellner, Q. Pan-hammarstrom et al., Screening of functional and positional candidate genes in families with common variable immunodeficiency, BMC Immunol, vol.9, p.3, 2008.

C. E. Gustafson, D. Higbee, A. R. Yeckes, C. C. Wilson, E. F. De-zoeten et al., Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell development during human infancy, Mucosal Immunol, vol.7, pp.467-77, 2014.

B. Manfroi, T. Mckee, J. F. Mayol, S. Tabruyn, S. Moret et al., CXCL-8/IL8 produced by diffuse large B-cell lymphomas recruits neutrophils expressing a proliferation-inducing ligand APRIL, Cancer Res, vol.77, pp.1097-107, 2017.

B. Huard, T. Mckee, C. Bosshard, S. Durual, T. Matthes et al., APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa, J Clin Invest, vol.118, pp.2887-95, 2008.

J. Schwaller, P. Schneider, P. Mhawech-fauceglia, T. Mckee, S. Myit et al., Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness, Blood, vol.109, pp.331-339, 2007.

M. Zimmermann, F. Arruda-silva, F. Bianchetto-aguilera, G. Finotti, F. Calzetti et al., IFNalpha enhances the production of IL-6 by human neutrophils activated via TLR8, Sci Rep, vol.6, 2016.

N. Gestermann, D. Domizio, J. Lande, R. Demaria, O. Frasca et al., Netting neutrophils activate autoreactive B cells in lupus, J Immunol, vol.200, pp.3364-71, 2018.

M. A. Nolte, E. N. Hoen, A. Van-stijn, G. Kraal, and R. E. Mebius, Isolation of the intact white pulp. Quantitative and qualitative analysis of the cellular composition of the splenic compartments, Eur J Immunol, vol.30, pp.626-660, 2000.

B. Steiniger and P. Barth, Microanatomy and function of the spleen, Adv Anat Embryol Cell Biol, vol.151, pp.1-101, 2000.

I. Puga, M. Cols, C. M. Barra, B. He, L. Cassis et al., B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen, Nat Immunol, vol.13, pp.170-80, 2011.

J. F. Deniset, B. G. Surewaard, W. Y. Lee, and P. Kubes, Splenic Ly6G(high) mature and Ly6G(int) immature neutrophils contribute to eradication of S. pneumoniae

, J Exp Med, vol.214, pp.1333-50, 2017.

S. Q. Nagelkerke, D. J. De-kerk, M. H. Jansen, T. K. Van-den-berg, and T. W. Kuijpers, Failure to detect functional neutrophil B helper cells in the human spleen, PLoS ONE, vol.9, p.88377, 2014.

I. Mavroudi, A. G. Eliopoulos, C. Pontikoglou, K. Pyrovolaki, A. Damianaki et al., Immunoglobulin and B-cell disturbances in patients with chronic idiopathic neutropenia, Clin Immunol, vol.183, pp.75-81, 2017.

A. Chorny, S. Casas-recasens, J. Sintes, M. Shan, N. Polentarutti et al., The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells, J Exp Med, vol.213, pp.2167-85, 2016.

S. Jaillon, G. Peri, Y. Delneste, I. Fremaux, A. Doni et al., The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps, J Exp Med, vol.204, pp.793-804, 2007.