M. I. Apostol, M. R. Sawaya, D. Cascio, and D. Eisenberg, Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease, J. Biol. Chem, vol.285, pp.29671-29675, 2010.

M. Baldus, A. T. Petkova, J. Herzfeld, and R. G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys, vol.95, pp.1197-1207, 1998.

E. Brandenburg, H. V. Berlepsch, and B. Koksch, Specific in situ discrimination of amyloid fibrils versus, Mol. BioSystems, vol.8, pp.557-564, 2012.

E. Brandenburg, H. Von-berlepsch, U. I. Gerling, C. Böttcher, and B. Koksch, Inhibition of amyloid aggregation by formation of helical assemblies, Chem. Eur. J, vol.17, pp.10651-10661, 2011.

S. P. Brown and H. W. Spiess, Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems, Chem. Rev, vol.101, pp.4125-4156, 2001.

A. K. Chamberlain, C. E. Macphee, J. Zurdo, L. A. Morozova-roche, H. A. Hill et al., Ultrastructural organization of amyloid fibrils by atomic force microscopy, Biophys. J, vol.79, pp.3282-3293, 2000.

I. Cherny and E. Gazit, Amyloids: not only pathological agents but also ordered nanomaterials, Angew. Chem. Int. Ed. Engl, vol.47, pp.4062-4069, 2008.

M. T. Colvin, R. Silvers, Q. Z. Ni, T. V. Can, I. Sergeyev et al., Atomic resolution structure of monomorphic A?42 amyloid fibrils, J. Am. Chem. Soc, vol.138, pp.9663-9674, 2016.

O. Conchillo-solé, N. S. De-groot, F. X. Avilés, J. Vendrell, X. Daura et al., AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides, BMC Bioinformatics, vol.8, p.65, 2007.

K. A. Dill and J. L. Maccallum, The protein-folding problem, 50 years on, Science, vol.338, pp.1042-1046, 2012.

C. M. Dobson, Getting out of shape, Nature, vol.418, pp.729-730, 2002.

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, pp.884-890, 2003.

C. M. Dobson and M. Karplus, The fundamentals of protein folding: bringing together theory and experiment, Curr. Opin. Struct. Biol, vol.9, pp.92-101, 1999.

E. D. Eanes and G. G. Glenner, X-ray diffraction studies on amyloid filaments, J. Histochem. Cytochem, vol.16, pp.673-677, 1968.

D. S. Eisenberg and M. R. Sawaya, Structural studies of amyloid proteins at the molecular level, Annu. Rev. Biochem, vol.86, pp.69-95, 2017.

A. Fernandez-escamilla, F. Rousseau, J. Schymkowitz, and L. Serrano, Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nat. Biotechnol, vol.22, pp.1302-1306, 2004.

A. W. Fitzpatrick, G. T. Debelouchina, M. J. Bayro, D. K. Clare, M. A. Caporini et al., Atomic structure and hierarchical assembly of a cross-beta amyloid fibril, PNAS, vol.110, pp.5468-5473, 2013.

A. W. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer's disease, Nature, vol.547, pp.185-190, 2017.

P. E. Fraser, J. T. Nguyen, W. K. Surewicz, and D. A. Kirschner, pH-dependent structural transitions of Alzheimer amyloid peptides, Biophys. J, vol.60, pp.1190-1201, 1991.

P. E. Fraser, J. T. Nguyen, H. Inouye, W. K. Surewicz, D. J. Selkoe et al., Fibril formation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer amyloid beta-protein, Biochemistry, vol.31, pp.10716-10723, 1992.

A. J. Geddes, K. D. Parker, E. D. Atkins, and E. Beighton, Cross-beta" conformation in proteins, J. Mol. Biol, vol.32, pp.343-358, 1968.

U. I. Gerling, E. Brandenburg, H. V. Berlepsch, K. Pagel, and B. Koksch, Structure analysis of an amyloid-forming model peptide by a systematic glycine and proline scan, Biomacromolecules, vol.12, pp.2988-2996, 2011.

U. I. Gerling, M. Salwiczek, C. D. Cadicamo, H. Erdbrink, C. Czekelius et al., Fluorinated amino acids in amyloid formation: a symphony of size, hydrophobicity and [small alpha]-helix propensity, Chem. Sci, vol.5, pp.819-830, 2014.

L. Gremer, D. Scholzel, C. Schenk, E. Reinartz, J. Labahn et al., Fibril structure of amyloid-beta(1-42) by cryo-electron microscopy, Science, vol.358, pp.116-119, 2017.

A. P. Hammersley, FIT2D V9.129 Reference Manual V3.1 ESRF Internal Report, 1998.

A. W. Hing, S. Vega, and J. Schaefer, Transferred-echo double-resonance NMR, J. Magn. Reson, issue.96, pp.205-209, 1969.

W. Hoffmann, K. Folmert, J. Moschner, X. Huang, H. Von-berlepsch et al., NFGAIL amyloid oligomers: the onset of beta-sheet formation and the mechanism for fibril formation, J. Am. Chem. Soc, 2017.

M. Hong, Resonance assignment of 13C/15N labeled solid proteins by two-and three-dimensional magic-angle-spinning NMR, J. Biomol. NMR, vol.15, pp.1-14, 1999.

M. Hong, Determination of multiple ***&phi, 1999.

. ***, -torsion angles in proteins by selective and extensive (13)C labeling and two-dimensional solid-state NMR, J. Magn. Resonance, vol.139, pp.389-401, 1997.

C. P. Jaroniec, B. A. Tounge, J. Herzfeld, and R. G. Griffin, Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate 13C-15N distance measurements in uniformly 13C,15N-labeled peptides, J. Am. Chem. Soc, vol.123, pp.3507-3519, 2001.

D. A. Kirschner, C. Abraham, and D. J. Selkoe, X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation, PNAS, vol.83, pp.503-507, 1986.

D. A. Kirschner, H. Inouye, L. K. Duffy, A. Sinclair, M. Lind et al., Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloidlike fibrils in vitro, PNAS, vol.84, pp.6953-6957, 1987.

H. A. Lashuel, S. R. Labrenz, L. Woo, L. C. Serpell, and J. W. Kelly, Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly: implications for amyloid fibril formation and materials science, J. Am. Chem. Soc, vol.122, pp.5262-5277, 2000.

J. Leiterer, F. Delissen, F. Emmerling, A. F. Thünemann, and U. Panne, Structure analysis using acoustically levitated droplets, Anal. Bioanal. Chem, vol.391, pp.1221-1228, 2008.

R. Linding, J. Schymkowitz, F. Rousseau, F. Diella, and L. Serrano, A comparative study of the relationship between protein structure and ?-aggregation in globular and intrinsically disordered proteins, J. Mol. Biol, vol.342, pp.345-353, 2004.

T. Lührs, C. Ritter, M. Adrian, D. Riek-loher, B. Bohrmann et al., 3D structure of Alzheimer's amyloid-?(1-42) fibrils, PNAS, vol.102, pp.17342-17347, 2005.

C. E. Macphee and D. N. Woolfson, Engineered and designed peptide-based fibrous biomaterials, Curr. Opin. Solid State Mater. Sci, vol.8, pp.141-149, 2004.

O. S. Makin and L. C. Serpell, Structures for amyloid fibrils, FEBS J, vol.272, pp.5950-5961, 2005.

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, Molecular basis for amyloid fibril formation and stability, PNAS, vol.102, pp.315-320, 2005.

A. Morimoto, K. Irie, K. Murakami, Y. Masuda, H. Ohigashi et al., Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement, J. Biol. Chem, vol.279, pp.52781-52788, 2004.

G. A. Morris and R. Freeman, Enhancement of nuclear magnetic-resonance signals by polarization transfer, J. Am. Chem. Soc, vol.101, pp.760-762, 1979.

K. Morris and L. Serpell, From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & peptides using fibre diffraction, Chem. Soc. Rev, vol.39, pp.3445-3453, 2010.

R. Nelson, M. R. Sawaya, M. Balbirnie, A. Ø. Madsen, C. Riekel et al., Structure of the cross-? spine of amyloid-like fibrils, Nature, vol.435, pp.773-778, 2005.

K. Pagel, T. Seri, H. Von-berlepsch, J. Griebel, R. Kirmse et al., How metal ions affect amyloid formation: Cu2+-and Zn2+-sensitive peptides, Chembiochem, vol.9, pp.531-536, 2008.

K. Pagel and B. Koksch, Following polypeptide folding and assembly with conformational switches, Curr. Opin. Chem. Biol, vol.12, pp.730-739, 2008.

K. Pagel, T. Vagt, T. Kohajda, and B. Koksch, From [small alpha]-helix to [small beta]-sheet -a reversible metal ion induced peptide secondary structure switch, Org. Biomol. Chem, vol.3, pp.2500-2502, 2005.

K. Pagel, S. C. Wagner, K. Samedov, H. Von-berlepsch, C. Böttcher et al., , 2006.

M. S. De-freitas, Journal of Structural Biology, vol.203, pp.263-272, 2018.

, Random coils, ?-sheet ribbons, and ?-helical fibers: one peptide adopting three different secondary structures at will, J. Am. Chem. Soc, vol.128, pp.2196-2197

K. Pagel, S. C. Wagner, R. Rezaei-araghi, H. Von-berlepsch, C. Böttcher et al., Intramolecular charge interactions as a tool to control the coiled-coil-toamyloid transformation, Chem. Eur. J, vol.14, pp.11442-11451, 2008.

O. Paris, C. Li, S. Siegel, G. Weseloh, F. Emmerling et al., A new experimental station for simultaneous X-ray microbeam scanning for small-and wide-angle scattering and fluorescence at BESSY II, J. Appl. Crystallogr, vol.40, pp.466-470, 2007.

J. Pauli, M. Baldus, B. Van-rossum, H. De-groot, and H. Oschkinat, Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla, pp.2272-2281, 2001.

A. T. Petkova, Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman et al., A structural model for Alzheimer's ?-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci, vol.99, pp.16742-16747, 2002.

A. T. Petkova, G. Buntkowsky, F. Dyda, R. D. Leapman, W. M. Yau et al., Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide, J. Mol. Biol, vol.335, pp.247-260, 2004.

K. M. Psonka-antonczyk, P. Hammarstrom, L. B. Johansson, M. Lindgren, B. T. Stokke et al., Nanoscale structure and spectroscopic probing of Abeta1-40 fibril bundle formation, p.44, 2016.

W. Qiang, W. M. Yau, J. X. Lu, J. Collinge, and R. Tycko, Structural variation in amyloid-beta fibrils from Alzheimer's disease clinical subtypes, Nature, vol.541, pp.217-221, 2017.

W. Rieping, M. Habeck, B. Bardiaux, A. Bernard, T. E. Malliavin et al., ARIA2: automated NOE assignment and data integration in NMR structure calculation, Bioinformatics, vol.23, pp.381-382, 2007.

F. Rousseau, J. Schymkowitz, and L. Serrano, Protein aggregation and amyloidosis: confusion of the kinds?, Curr. Opin. Struct. Biol, vol.16, pp.118-126, 2006.

D. J. Selkoe, Folding proteins in fatal ways, Nature, vol.426, pp.900-904, 2003.

J. Seo, W. Hoffmann, S. Warnke, X. Huang, S. Gewinner et al., An infrared spectroscopy approach to follow ?-sheet formation in peptide amyloid assemblies, Nat. Chem, vol.9, p.39, 2016.

Y. Shen, F. Delaglio, G. Cornilescu, and A. Bax, TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts, J. Biomol. NMR, vol.44, pp.213-223, 2009.

A. M. Squires, G. L. Devlin, S. L. Gras, A. K. Tickler, C. E. Macphee et al., X-ray scattering study of the effect of hydration on the cross-beta structure of amyloid fibrils, J. Am. Chem. Soc, vol.128, pp.11738-11739, 2006.

M. Stefani and C. M. Dobson, Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution, J. Mol. Med, vol.81, pp.678-699, 2003.

T. J. Stevens, R. H. Fogh, W. Boucher, V. A. Higman, F. Eisenmenger et al., A software framework for analysing solid-state MAS NMR data, J. Biomol. NMR, vol.51, pp.437-447, 2011.

S. K. Straus, T. Bremi, and R. R. Ernst, Experiments and strategies for the assignment of fully13C/15N-labelled polypeptides by solid state NMR, J. Biomol. NMR, vol.12, pp.39-50, 1998.

G. Stubbs, Developments in fiber diffraction, Curr. Opin. Struct. Biol, vol.9, pp.615-619, 1999.

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys et al., Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J. Mol. Biol, vol.273, pp.729-739, 1997.

N. M. Szeverenyi, M. J. Sullivan, and G. E. Maciel, Observation of spin exchange by two-dimensional fourier transform 13 C cross polarization-magic-angle spinning, J. Magn. Reson, vol.47, pp.462-475, 1982.

R. Tycko, Solid-state NMR studies of amyloid fibril structure, Annu. Rev. Phys. Chem, vol.62, pp.279-299, 2011.

W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon et al., The CCPN data model for NMR spectroscopy: development of a software pipeline, Proteins Struct. Funct. Genet, vol.59, pp.687-696, 2005.

M. A. Wälti, F. Ravotti, H. Arai, C. G. Glabe, J. S. Wall et al., Atomic-resolution structure of a disease-relevant A?(1-42) amyloid fibril, Proc. Natl. Acad. Sci, vol.113, pp.4976-4984, 2016.

A. D. Williams, E. Portelius, I. Kheterpal, J. T. Guo, K. D. Cook et al., Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis, J. Mol. Biol, vol.335, pp.833-842, 2004.

A. D. Williams, S. Shivaprasad, and R. Wetzel, Alanine scanning mutagenesis of Abeta (1-40) amyloid fibril stability, J. Mol. Biol, vol.357, pp.1283-1294, 2006.

C. Zhang, S. M. Mortuza, B. He, Y. Wang, and Y. Zhang, Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12, Proteins: Struct. Funct. Bioinf, pp.1-16, 2017.

M. S. De-freitas, Journal of Structural Biology, vol.203, pp.263-272, 2018.