D. Ladant, C. Brezin, J. M. Alonso, I. Crenon, and N. Guiso, Bordetella pertussis adenylate cyclase. Purification, characterization, and radioimmunoassay, J. Biol. Chem, vol.261, pp.16264-16269, 1986.
URL : https://hal.archives-ouvertes.fr/hal-02184809

P. Glaser, A. Danchin, D. Ladant, O. Barzu, and A. Ullmann, Bordetella pertussis adenylate cyclase: The gene and the protein, Tokai J. Exp. Clin. Med, vol.13, pp.239-252, 1988.

P. Glaser, D. Ladant, O. Sezer, F. Pichot, A. Ullmann et al., The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: Cloning and expression in Escherichia coli, Mol. Microbiol, vol.2, pp.19-30, 1988.

N. Guiso, Bordetella Adenylate Cyclase-Hemolysin Toxins, Toxins, vol.9, p.277, 2017.

J. Novak, O. Cerny, A. Osickova, I. Linhartova, J. Masin et al., Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes, Toxins, vol.9, 2017.

, Toxins, vol.11, p.111, 2019.

J. G. Coote, Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria, FEMS Microbiol. Rev, vol.8, pp.137-161, 1992.

R. A. Welch, RTX toxin structure and function: A story of numerous anomalies and few analogies in toxin biology, Curr. Top. in Microbiol. and Immunol, vol.257, pp.85-111, 2001.

I. Linhartova, L. Bumba, J. Masin, M. Basler, R. Osicka et al., RTX proteins: A highly diverse family secreted by a common mechanism, FEMS Microbiol. Rev, vol.34, pp.1076-1112, 2010.

A. Chenal, A. C. Sotomayor-perez, and D. Ladant, Structure and function of RTX Toxins, The Comprehensive Sourcebook of Bacterial Protein Toxins, 2015.

R. Benz, Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity, Biochim. Biophys. Acta, vol.1858, pp.526-537, 2016.

D. Ladant and A. Ullmann, Bordatella pertussis adenylate cyclase: A toxin with multiple talents, Trends Microbiol, vol.7, pp.172-176, 1999.

J. C. Karst, V. Y. Ntsogo-enguene, S. E. Cannella, O. Subrini, A. Hessel et al., Calcium, Acylation, and Molecular Confinement Favor Folding of Bordetella pertussis Adenylate Cyclase CyaA Toxin into a Monomeric and Cytotoxic Form, J. Biol. Chem, vol.289, pp.30702-30716, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01408931

D. Ladant, Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains, J. Biol. Chem, vol.263, pp.2612-2618, 1988.

J. C. Karst, A. C. Sotomayor-perez, J. I. Guijarro, B. Raynal, A. Chenal et al., Calmodulin-induced conformational and hydrodynamic changes in the catalytic domain of Bordetella pertussis adenylate cyclase toxin, Biochemistry, vol.49, pp.318-328, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512114

D. P. O'brien, D. Durand, A. Voegele, V. Hourdel, M. Davi et al., Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis, PLoS Biol, vol.15, 2017.

J. C. Karst, R. Barker, U. Devi, M. J. Swann, M. Davi et al., Identification of a region that assists membrane insertion and translocation of the catalytic domain of Bordetella pertussis CyaA toxin, J. Biol. Chem, vol.287, pp.9200-9212, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01423063

O. Subrini, A. C. Sotomayor-perez, A. Hessel, J. Spiaczka-karst, E. Selwa et al., Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin, J. Biol. Chem, vol.288, pp.32585-32598, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00937043

J. Masin, A. Osickova, A. Sukova, R. Fiser, P. Halada et al., Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin, Sci. Rep, 2016.

A. Voegele, O. Subrini, N. Sapay, D. Ladant, and A. Chenal, Membrane-Active Properties of an Amphitropic Peptide from the CyaA Toxin Translocation Region, Toxins, vol.9, p.369, 2017.

O. Knapp, E. Maier, J. Masin, P. Sebo, and R. Benz, Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: Role of voltage and pH, Biochim. Biophys. Acta, vol.1778, pp.260-269, 2008.

M. Basler, O. Knapp, J. Masin, R. Fiser, E. Maier et al., Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin, J. Biol. Chem, vol.282, pp.12419-12429, 2007.

E. M. Barry, A. A. Weiss, I. E. Ehrmann, M. C. Gray, E. L. Hewlett et al., Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation, J. Bacteriol, vol.173, pp.720-726, 1991.

M. Hackett, L. Guo, J. Shabanowitz, D. F. Hunt, and E. L. Hewlett, Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis, Science, vol.266, pp.433-435, 1994.

G. D. Westrop, E. K. Hormozi, N. A. Da-costa, R. Parton, and J. G. Coote, Bordetella pertussis adenylate cyclase toxin: proCyaA and CyaC proteins synthesised separately in Escherichia coli produce active toxin in vitro, Gene, vol.180, pp.91-99, 1996.

R. Veneziano, C. Rossi, A. Chenal, J. M. Devoisselle, D. Ladant et al., Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer, Proc. Natl. Acad. Sci, vol.110, pp.20473-20478, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01093165

T. Rose, P. Sebo, J. Bellalou, and D. Ladant, Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes, J. Biol. Chem, vol.270, pp.26370-26376, 1995.

A. Chenal, J. I. Guijarro, B. Raynal, M. Delepierre, and D. Ladant, RTX calcium binding motifs are intrinsically disordered in the absence of calcium: Implication for protein secretion, J. Biol. Chem, vol.284, pp.1781-1789, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00364637

S. Perez, A. C. Karst, J. C. Davi, M. Guijarro, J. I. Ladant et al., Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the bordetella pertussis adenylate cyclase toxin, J. Mol. Biol, vol.397, pp.534-549, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512116

A. Chenal, J. C. Karst, A. C. Sotomayor-perez, A. K. Wozniak, B. Baron et al., Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin, Biophys. J, vol.99, pp.3744-3753, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01509576

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Calcium-induced folding of intrinsically disordered repeat-in-toxin (RTX) motifs via changes of protein charges and oligomerization states, J. Biol. Chem, vol.286, pp.16997-17004, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01508724

A. C. Sotomayor-perez, O. Subrini, A. Hessel, D. Ladant, and A. Chenal, Molecular Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded Calcium-Bound State of a Repeat in Toxin (RTX), Protein. J. of the Am. Chem. Soc, vol.135, pp.11929-11934, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01423043

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Disorder-to-order transition in the CyaA toxin RTX domain: Implications for toxin secretion, Toxins, vol.7, pp.1-20, 2015.

D. P. O'brien, B. Hernandez, D. Durand, V. Hourdel, A. C. Sotomayor-perez et al., Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion, Sci. Rep, vol.5, 2015.

L. Bumba, J. Masin, P. Macek, T. Wald, L. Motlova et al., Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts, Mol. Cell, vol.62, pp.47-62, 2016.

D. P. O'brien, A. C. Perez, J. Karst, S. E. Cannella, V. Y. Enguene et al., Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough, Toxicon, vol.149, pp.37-44, 2018.

M. El-azami-el-idrissi, C. Bauche, J. Loucka, R. Osicka, P. Sebo et al., Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction domain, J. Biol. Chem, vol.278, pp.38514-38521, 2003.

G. Fedele, I. Schiavoni, I. Adkins, N. Klimova, and P. Sebo, Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity, Toxins, vol.9, p.293, 2017.

D. Gonzalez-bullon, K. B. Uribe, C. Martin, and H. Ostolaza, Phospholipase A activity of adenylate cyclase toxin mediates translocation of its adenylate cyclase domain, Proc. Natl. Acad. Sci, vol.114, pp.6784-6793, 2017.

D. Gonzalez-bullon, C. Martin, and H. Ostolaza, Characterization of the Intrinsic Phospholipase A1 Activity of Bordetella pertussis Adenylate Cyclase Toxin, Toxins, vol.10, 2018.

L. Bumba, J. Masin, A. Osickova, R. Osicka, and P. Sebo, Bordetella Pertussis Adenylate Cyclase Toxin Does Not Possess a Phospholipase A Activity; Serine 606 and Aspartate 1079 Residues Are Not Involved in Target Cell Delivery of the Adenylyl Cyclase Enzyme Domain, Toxins, vol.10, p.245, 2018.

S. E. Cannella, V. Y. Ntsogo-enguene, M. Davi, C. Malosse, A. C. Sotomayor-perez et al., Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis
URL : https://hal.archives-ouvertes.fr/pasteur-01508525

M. Ostrowski, D. Porowinska, T. Prochnicki, M. Prevost, B. Raynal et al., Neurotoxic phospholipase A2 from rattlesnake as a new ligand and new regulator of prokaryotic receptor GLIC (proton-gated ion channel from G. violaceus), Toxicon, vol.116, pp.63-71, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01721225

H. S. Hendrickson and P. N. Rauk, Continuous fluorometric assay of phospholipase A2 with pyrene-labeled lecithin as a substrate, Anal. Biochem, vol.116, pp.553-558, 1981.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

G. Faure, H. Xu, and F. A. Saul, Crystal structure of crotoxin reveals key residues involved in the stability and toxicity of this potent heterodimeric beta-neurotoxin, J. Mol. Bio, vol.412, pp.176-191, 2011.

A. J. Aarsman, L. L. Vandeenen, and H. Vandenbosch, Studies on Lysophospholipases VII. Synthesis of Acylthioester Analogs of Lysolecithin and Their Use in a Continuous Spectrophotometric Assay for Lysophospholipases, a Method with Potential Applicability to Other Lipolytic Enzymes, Bioorg. Chem, vol.5, pp.241-253, 1976.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: A peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.