, A reference standard for genome biology, Nat. Biotechnol, vol.36, p.1121, 2018.

J. W. Harper and E. J. Bennett, Proteome complexity and the forces that drive proteome imbalance, Nature, vol.537, pp.328-338, 2016.

N. M. Riley, The negative mode proteome with activated ion negative electron transfer dissociation (AI-NETD), Mol. Cell. Proteom, vol.14, pp.2644-2660, 2015.

N. E. Chayen and E. Saridakis, Protein crystallization: from purified protein to diffraction-quality crystal, Nat. Methods, vol.5, pp.147-153, 2008.

H. L. Liu and J. P. Hsu, Recent developments in structural proteomics for protein structure determination, Proteomics, vol.5, pp.2056-2068, 2005.

A. A. Yee, NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins, J. Am. Chem. Soc, vol.127, pp.16512-16517, 2005.

H. W. Wang and J. W. Wang, How cryo-electron microscopy and X-ray crystallography complement each other, Protein Sci, vol.26, pp.32-39, 2017.

M. Vidal, M. E. Cusick, and A. L. Barabási, Interactome networks and human disease, Cell, vol.144, pp.986-998, 2011.

K. Luck, G. M. Sheynkman, I. Zhang, and M. Vidal, Proteome-scale human interactomics, Trends Biochem. Sci, vol.42, pp.342-354, 2017.

U. Stelzl, A human protein-protein interaction network: a resource for annotating the proteome, Cell, vol.122, pp.957-968, 2005.

J. F. Rual, Towards a proteome-scale map of the human protein-protein interaction network, Nature, vol.437, pp.1173-1178, 2005.

T. Rolland, A proteome-scale map of the human interactome network, Cell, vol.159, pp.1212-1226, 2014.

E. L. Huttlin, The BioPlex network: a systematic exploration of the human interactome, Cell, vol.162, pp.425-440, 2015.

M. Y. Hein, A human interactome in three quantitative dimensions organized by stoichiometries and abundances, Cell, vol.163, pp.712-723, 2015.

C. Wan, Panorama of ancient metazoan macromolecular complexes, Nature, vol.525, pp.339-344, 2015.

A. J. Walhout, Protein interaction mapping in C. elegans using proteins involved in vulval development, Science, vol.287, pp.116-122, 2000.

M. Tewari, Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network, Mol. Cell, vol.13, pp.469-482, 2004.

A. Flores, A protein-protein interaction map of yeast RNA polymerase III, Proc. Natl Acad. Sci. USA, vol.96, pp.7815-7820, 1999.

J. De-las-rivas and C. Fontanillo, Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell, Brief. Funct. Genom, vol.11, pp.489-496, 2012.

M. J. Cowley, PINA v2.0: mining interactome modules, Nucleic Acids Res, vol.40, pp.862-865, 2012.

S. Fields and O. Song, A novel genetic system to detect protein-protein interactions, Nature, vol.340, pp.245-246, 1989.

K. Venkatesan, An empirical framework for binary interactome mapping, Nat. Methods, vol.6, pp.83-90, 2009.

P. Braun, An experimentally derived confidence score for binary protein-protein interactions, Nat. Methods, vol.6, pp.91-97, 2009.

P. Cassonnet, Benchmarking a luciferase complementation assay for detecting protein complexes, Nat. Methods, vol.8, pp.990-992, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971619

S. Lievens, Kinase substrate sensor (KISS), a mammalian in situ protein interaction sensor, Mol. Cell. Proteom, vol.13, pp.3332-3342, 2014.

P. Trepte, DULIP: a dual luminescence-based co-immunoprecipitation assay for interactome mapping in mammalian cells, J. Mol. Biol, vol.427, pp.3375-3388, 2015.

P. Trepte, LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells, Mol. Syst. Biol, vol.14, p.8071, 2018.

Y. C. Chen, S. V. Rajagopala, T. Stellberger, and P. Uetz, Exhaustive benchmarking of the yeast two-hybrid system, Nat. Methods, vol.7, pp.667-668, 2010.

J. H. Caufield, N. Sakhawalkar, and P. Uetz, A comparison and optimization of yeast two-hybrid systems, Methods, vol.58, pp.317-324, 2012.

M. Vidal and S. Fields, The yeast two-hybrid assay: still finding connections after 25 years, Nat. Methods, vol.11, pp.1203-1206, 2014.

M. P. Hall, Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate, ACS Chem. Biol, vol.7, pp.1848-1857, 2012.

A. J. Walhout, GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes, Methods Enzymol, vol.328, pp.575-592, 2000.

N. Sahni, Widespread macromolecular interaction perturbations in human genetic disorders, Cell, vol.161, pp.647-660, 2015.

T. Stellberger, Improving the yeast two-hybrid system with permutated fusions proteins: the Varicella Zoster Virus interactome, Proteome Sci, vol.8, 2010.

S. Lievens, Array MAPPIT: high-throughput interactome analysis in mammalian cells, J. Proteome Res, vol.8, pp.877-886, 2009.

E. Riegel, T. Heimbucher, T. Hofer, and T. Czerny, A sensitive, semiquantitative mammalian two-hybrid assay, Biotechniques, vol.62, pp.206-214, 2017.

Y. Tang, J. Qiu, M. Machner, and J. Labaer, Discovering protein-protein interactions using nucleic acid programmable protein arrays, Curr. Protoc. Cell Biol, vol.74, 2017.

J. Yazaki, M. Galli, A. Y. Kim, and J. R. Ecker, Profiling interactome networks with the HaloTag-NAPPA in situ protein array, Curr. Protoc. Plant Biol, vol.3, p.20071, 2018.

A. S. Dixon, NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells, ACS Chem. Biol, vol.11, pp.400-408, 2016.

L. G. Verhoef, M. Mattioli, F. Ricci, Y. C. Li, and M. Wade, Multiplex detection of protein-protein interactions using a next generation luciferase reporter, Biochim. Biophys. Acta, vol.1863, pp.284-292, 2016.

X. Mo, AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay, Mol. Pharmacol, vol.91, pp.339-347, 2017.

A. C. Stacer, NanoLuc reporter for dual luciferase imaging in living animals, Mol. Imaging, vol.12, pp.1-13, 2013.

C. Germain-genevois, O. Garandeau, and F. Couillaud, Detection of brain tumors and systemic metastases using NanoLuc and FLuc for dual reporter imaging, Mol. Imaging Biol, vol.18, pp.62-69, 2016.

, The ORFeome Collaboration: a genome-scale human ORF-clone resource, Nat. Methods, vol.13, pp.191-192, 2016.

M. E. Cusick, Literature-curated protein interaction datasets, Nat. Methods, vol.6, pp.39-46, 2009.

P. Lamesch, C. elegans ORFeome version 3.1: increasing the coverage of ORFeome resources with improved gene predictions, Genome Res, vol.14, pp.2064-2069, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02262415

J. Harrow, GENCODE: the reference human genome annotation for The ENCODE Project, Genome Res, vol.22, pp.1760-1774, 2012.

H. Redden and H. S. Alper, The development and characterization of synthetic minimal yeast promoters, Nat. Commun, vol.6, p.7810, 2015.

K. A. Jones, K. R. Yamamoto, and R. Tjian, Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro, Cell, vol.42, pp.559-572, 1985.

S. R. Thompson, K. D. Gulyas, and P. Sarnow, Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element, Proc. Natl Acad. Sci. USA, vol.98, pp.12972-12977, 2001.

I. S. Fernández, X. C. Bai, G. Murshudov, S. H. Scheres, and V. Ramakrishnan, Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome, Cell, vol.157, pp.823-831, 2014.

T. L. Orr-weaver, J. W. Szostak, and R. J. Rothstein, Genetic applications of yeast transformation with linear and gapped plasmids, Methods Enzymol, vol.101, pp.228-245, 1983.

A. J. Walhout and M. Vidal, High-throughput yeast two-hybrid assays for largescale protein interaction mapping, Methods, vol.24, pp.297-306, 2001.

H. Yu, High-quality binary protein interaction map of the yeast interactome network, Science, vol.322, pp.104-110, 2008.