A. Akhmanova and M. O. Steinmetz, Tracking the ends: a dynamic protein network controls the fate of microtubule tips, Nat. Rev. Mol. Cell Biol, vol.9, pp.309-322, 2008.

A. Akhmanova and M. O. Steinmetz, Control of microtubule organization and dynamics: two ends in the limelight, Nat. Rev. Mol. Cell Biol, vol.16, p.711, 2015.

A. Akhmanova, C. C. Hoogenraad, K. Drabek, T. Stepanova, B. Dortland et al., CLASPs Are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts, Cell, vol.104, pp.923-935, 2001.

T. Akisaka, H. Yoshida, and T. Takigawa, Differential distribution of posttranslationally modified microtubules in osteoclasts, J. Histochem. Cytochem, vol.59, pp.630-638, 2011.

L. Andre?-delgado, O. M. Anto?n, F. Bartolini, A. Ruiz-saénz, I. Correas et al., INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells, J. Cell Biol, vol.198, pp.1025-1037, 2012.

B. Bance, S. Seetharaman, C. Leduc, B. Boe?da, and S. Etienne-manneville, Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration, J. Cell Sci, vol.132, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02118627

F. Bartolini, J. B. Moseley, J. Schmoranzer, L. Cassimeris, B. L. Goode et al., The formin mDia2 stabilizes microtubules independently of its actin nucleation activity, J. Cell Biol, vol.181, pp.523-536, 2008.

F. Bartolini, L. Andres-delgado, X. Qu, S. Nik, N. Ramalingam et al., An mDia1-INF2 formin activation cascade facilitated by IQGAP1 regulates stable microtubules in migrating cells, Mol. Biol. Cell, vol.27, pp.1797-1808, 2016.

A. Bershadsky, A. Chausovsky, E. Becker, A. Lyubimova, and B. Geiger, Involvement of microtubules in the control of adhesion-dependent signal transduction, Curr. Biol, vol.6, pp.1279-1289, 1996.

E. Beurel, S. F. Grieco, and R. S. Jope, Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases, Pharmacol. Ther, vol.148, pp.114-131, 2015.

R. Bhuwania, A. Castro-castro, and S. Linder, Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes, Eur. J. Cell Biol, vol.93, pp.424-437, 2014.

M. Biosse-duplan, D. Zalli, S. Stephens, S. Zenger, L. Neff et al., Microtubule dynamic instability controls podosome patterning in osteoclasts through EB1, cortactin, and Src, Mol. Cell. Biol, vol.34, pp.16-29, 2014.

B. P. Bouchet, R. E. Gough, Y. Ammon, D. Van-de-willige, H. Post et al., Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions, vol.5, 2016.

A. Byron, J. A. Askari, J. D. Humphries, G. Jacquemet, E. J. Koper et al., A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting, Nat. Commun, vol.6, p.6135, 2015.

D. A. Calderwood, I. D. Campbell, and D. R. Critchley, Talins and kindlins: partners in integrin-mediated adhesion, Nat. Rev. Mol. Cell Biol, vol.14, pp.503-517, 2013.

M. G. Callow, S. Zozulya, M. L. Gishizky, B. Jallal, and T. Smeal, PAK4 mediates morphological changes through the regulation of GEF-H1, J. Cell Sci, vol.118, pp.1861-1872, 2005.

D. Cao, Z. Su, W. Wang, H. Wu, X. Liu et al., Signaling scaffold protein IQGAP1 interacts with microtubule plus-end tracking protein SKAP and links dynamic microtubule plusend to steer cell migration, J. Biol. Chem, vol.290, pp.23766-23780, 2015.

A. Castro-castro, C. Janke, G. Montagnac, P. Paul-gilloteaux, and P. Chavrier, ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion, Eur. J. Cell Biol, vol.91, pp.950-960, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01712252

Y. Chang, P. Nalbant, J. Birkenfeld, Z. Chang, and G. M. Bokoch, , 2008.

, GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA, vol.19, pp.2147-2153

W. Chao and J. Kunz, Focal adhesion disassembly requires clathrindependent endocytosis of integrins, FEBS Lett, vol.583, pp.1337-1343, 2009.

T. A. Cook, T. Nagasaki, and G. G. Gundersen, Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid, J. Cell Biol, vol.141, pp.175-185, 1998.

S. Cornfine, M. Himmel, P. Kopp, K. El-azzouzi, C. Wiesner et al., The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes, Mol. Biol. Cell, vol.22, pp.202-215, 2011.

J. A. Cross and M. P. Dodding, Motor-cargo adaptors at the organellecytoskeleton interface, Curr. Opin. Cell Biol, vol.59, pp.16-23, 2019.

C. De-pascalis and S. Etienne-manneville, Single and collective cell migration: the mechanics of adhesions, Mol. Biol. Cell, vol.28, pp.1833-1846, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02058848

L. Dehmelt and S. Halpain, The MAP2/Tau family of microtubuleassociated proteins, Genome Biol, vol.6, p.204, 2004.

E. Del-nery, S. Miserey-lenkei, T. Falguieres, C. Nizak, L. Johannes et al., Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein, Mol. Biol. Cell, vol.7, pp.407-416, 2003.

O. Destaing, F. Saltel, B. Gilquin, A. Chabadel, S. Khochbin et al., A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts, J. Cell Sci, vol.118, pp.2901-2911, 2005.

A. Efimov, N. Schiefermeier, I. Grigoriev, R. Ohi, M. C. Brown et al., Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites, J. Cell Sci, vol.121, pp.196-204, 2008.

S. A. Eisler, F. Curado, G. Link, S. Schulz, M. Noack et al., A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions, vol.7, p.35907, 2018.

A. Elosegui-artola, X. Trepat, and P. Roca-cusachs, Control of mechanotransduction by molecular clutch dynamics, Trends Cell Biol, vol.28, pp.356-367, 2018.

T. Enomoto, Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade, Cell Struct. Funct, vol.21, pp.317-326, 1996.

S. Etienne-manneville, From signaling pathways to microtubule dynamics: the key players, Curr. Opin. Cell Biol, vol.22, pp.104-111, 2010.

S. Etienne-manneville, Microtubules in cell migration, Annu. Rev. Cell Dev. Biol, vol.29, pp.471-499, 2013.

S. Etienne-manneville and A. Hall, Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity, Nature, vol.421, pp.753-756, 2003.

S. Etienne-manneville, J. Manneville, S. Nicholls, M. A. Ferenczi, and A. Hall, Cdc42 and Par6-PKC? regulate the spatially localized association of Dlg1 and APC to control cell polarization, J. Cell Biol, vol.170, pp.895-901, 2005.

E. J. Ezratty, M. A. Partridge, and G. G. Gundersen, Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase, Nat. Cell Biol, vol.7, pp.581-590, 2005.

E. J. Ezratty, C. Bertaux, E. E. Marcantonio, and G. G. Gundersen, Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells, J. Cell Biol, vol.187, pp.733-747, 2009.

J. Ferna?dez-barrera, M. Bernabe-rubio, J. Casares-arias, L. Rangel, L. Ferna?dez-mart?? et al., The actin-MRTF-SRF transcriptional circuit controls tubulin acetylation via ?-TAT1 gene expression, J. Cell Biol, vol.217, pp.929-944, 2018.

L. Fourriere, A. Kasri, N. Gareil, S. Bardin, H. Bousquet et al., RAB6 and microtubules restrict protein secretion to focal adhesions, J. Cell Biol, vol.218, pp.2215-2231, 2019.

M. Fukata, T. Watanabe, J. Noritake, M. Nakagawa, M. Yamaga et al., Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170, Cell, vol.109, pp.873-885, 2002.

J. Gaillard, V. Ramabhadran, E. Neumanne, P. Gurel, L. Blanchoin et al., Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules, Mol. Biol. Cell, vol.22, pp.4575-4587, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00636879

Z. Gan, L. Ding, C. J. Burckhardt, J. Lowery, A. Zaritsky et al., Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration, Cell Syst, vol.3, pp.252-263, 2016.

B. Geiger, Z. Avnur, G. Rinnerthaler, H. Hinssen, and V. J. Small, , 1984.

, Microfilament-organizing centers in areas of cell contact: cytoskeletal interactions during cell attachment and locomotion, J. Cell Biol, vol.99

H. Gil-henn, O. Destaing, N. A. Sims, K. Aoki, N. Alles et al., Defective microtubuledependent podosome organization in osteoclasts leads to increased bone density in Pyk2(?/?) mice, J. Cell Biol, vol.178, pp.1053-1064, 2007.

M. Gimona, R. Buccione, S. A. Courtneidge, and S. Linder, Assembly and biological role of podosomes and invadopodia, Curr. Opin. Cell Biol, vol.20, pp.235-241, 2008.

C. M. Gould and S. A. Courtneidge, Regulation of invadopodia by the tumor microenvironment, Cell Adhes. Migr, vol.8, pp.226-235, 2014.

S. M. Gouveia and A. Akhmanova, Cell and molecular biology of microtubule plus end tracking proteins: end binding proteins and their partners, Int. Rev. Cell Mol. Biol, vol.285, pp.1-74, 2010.

M. Gregor, S. Osmanagic-myers, G. Burgstaller, M. Wolfram, I. Fischer et al., Mechanosensing through focal adhesion-anchored intermediate filaments, FASEB J, vol.28, pp.715-729, 2014.

I. Grigoriev, D. Splinter, N. Keijzer, P. S. Wulf, J. Demmers et al., Rab6 regulates transport and targeting of exocytotic carriers, Dev. Cell, vol.13, pp.305-314, 2007.

I. Grigoriev, K. L. Yu, E. Martinez-sanchez, A. Serra-marques, I. Smal et al., Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers, Curr. Biol, vol.21, pp.967-974, 2011.

Z. Gu, E. H. Noss, V. W. Hsu, and M. B. Brenner, Integrins traffic rapidly via circular dorsal ruffles and macropinocytosis during stimulated cell migration, J. Cell Biol, vol.193, pp.61-70, 2011.

C. Guilluy, V. Swaminathan, R. Garcia-mata, E. T. O'brien, R. Superfine et al., The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins, Nat. Cell Biol, vol.13, pp.722-727, 2011.

S. L. Gupton and F. B. Gertler, Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis, Dev. Cell, vol.18, pp.725-736, 2010.

A. Hotta, T. Kawakatsu, T. Nakatani, T. Sato, C. Matsui et al., Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5alpha/beta, J. Cell Biol, vol.189, pp.901-917, 2010.

T. Ishizaki, Y. Morishima, M. Okamoto, T. Furuyashiki, T. Kato et al., Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1, Nat. Cell Biol, vol.3, pp.8-14, 2001.

K. A. Jansen, P. Atherton, and C. Ballestrem, Mechanotransduction at the cell-matrix interface, Semin. Cell Dev. Biol, vol.71, pp.75-83, 2017.

N. Kakinuma and R. Kiyama, A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane, Biochem. Biophys. Res. Commun, vol.386, pp.639-644, 2009.

I. Kaverina, K. Rottner, and J. V. Small, Targeting, capture, and stabilization of microtubules at early focal adhesions, J. Cell Biol, vol.142, pp.181-190, 1998.

I. Kaverina, O. Krylyshkina, and J. V. Small, Microtubule targeting of substrate contacts promotes their relaxation and dissociation, J. Cell Biol, vol.146, pp.1033-1044, 1999.

Y. Kawasaki, T. Senda, T. Ishidate, R. Koyama, T. Morishita et al., Asef, a link between the tumor suppressor APC and Gprotein signaling, Science, vol.289, pp.1194-1197, 2000.

M. W. Kirschner and T. I. Mitchison, Microtubule dynamics, Nature, vol.324, pp.621-621, 1986.

B. Klapholz and N. H. Brown, Talin -the master of integrin adhesions, J. Cell Sci, vol.130, pp.2435-2446, 2017.

J. Ko, M. Na, S. Kim, J. Lee, and E. Kim, Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins, J. Biol. Chem, vol.278, pp.42377-42385, 2003.

M. Krendel, F. T. Zenke, and G. M. Bokoch, Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton, Nat. Cell Biol, vol.4, pp.294-301, 2002.

O. Krylyshkina, K. I. Anderson, I. Kaverina, I. Upmann, D. J. Manstein et al., Nanometer targeting of microtubules to focal adhesions, J. Cell Biol, vol.161, pp.853-859, 2003.

P. Kumar, K. S. Lyle, S. Gierke, A. Matov, G. Danuser et al., GSK3beta phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment, J. Cell Biol, vol.184, pp.895-908, 2009.

S. E. Laflamme, S. Mathew-steiner, N. Singh, D. Colello-borges, B. Nieves et al., Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization, Cell. Mol. Life Sci, vol.75, pp.1003-1014, 2004.

G. Lansbergen, I. Grigoriev, Y. Mimori-kiyosue, T. Ohtsuka, S. Higa et al., CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta, Dev. Cell, vol.11, pp.21-32, 2006.

C. D. Lawson and A. J. Ridley, Rho GTPase signaling complexes in cell migration and invasion, J. Cell Biol, vol.217, pp.447-457, 2018.

C. Leduc and S. Etienne-manneville, Regulation of microtubuleassociated motors drives intermediate filament network polarization, J. Cell Biol, vol.216, pp.1689-1703, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02058889

S. Lee and S. Kumar, Actomyosin stress fiber mechanosensing in 2D and 3D. F1000 Res, vol.5, p.2261, 2016.

R. E. Leube, M. Moch, and R. Windoffer, Intermediate filaments and the regulation of focal adhesion, Curr. Opin. Cell Biol, vol.32, pp.13-20, 2015.

S. Linder, K. Hufner, U. Wintergerst, and M. Aepfelbacher, Microtubuledependent formation of podosomal adhesion structures in primary human macrophages, J. Cell Sci, vol.113, pp.4165-4176, 2000.

S. Linder, C. Wiesner, and M. Himmel, Degrading devices: invadosomes in proteolytic cell invasion, Annu. Rev. Cell Dev. Biol, vol.27, pp.185-211, 2011.

B. P. Liu, M. Chrzanowska-wodnicka, and K. Burridge, Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein rho, Cell Adhes. Commun, vol.5, pp.249-255, 1998.

J. Manneville and S. Etienne-manneville, Positioning centrosomes and spindle poles: looking at the periphery to find the centre, Biol. Cell, vol.98, pp.557-565, 2006.

J. Manneville, M. Jehanno, and S. Etienne-manneville, Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity, J. Cell Biol, vol.191, pp.585-598, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00542451

C. Margadant, H. N. Monsuur, J. C. Norman, and A. Sonnenberg, Mechanisms of integrin activation and trafficking, Curr. Opin. Cell Biol, vol.23, pp.607-614, 2011.

D. Meiri, C. B. Marshall, M. A. Greeve, B. Kim, M. Balan et al., Mechanistic insight into the microtubule and actin cytoskeleton coupling through dynein-dependent RhoGEF inhibition, Mol. Cell, vol.45, pp.642-655, 2012.

S. Mili, K. Moissoglu, and I. G. Macara, Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions, Nature, vol.453, pp.115-119, 2008.

L. A. Mingle, N. N. Okuhama, J. Shi, R. H. Singer, J. Condeelis et al., Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts, J. Cell Sci, vol.118, pp.2425-2433, 2005.

D. A. Murphy and S. A. Courtneidge, The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function, Nat. Rev. Mol. Cell Biol, vol.12, pp.413-426, 2011.

W. Ning, Y. Yu, H. Xu, X. Liu, D. Wang et al., The CAMSAP3-ACF7 complex couples noncentrosomal microtubules with actin filaments to coordinate their dynamics, Dev. Cell, vol.39, pp.61-74, 2016.

T. Nishimura, K. Kato, T. Yamaguchi, Y. Fukata, S. Ohno et al., Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity, Nat. Cell Biol, vol.6, pp.328-334, 2004.

I. Noordstra and A. Akhmanova, Linking cortical microtubule attachment and exocytosis. F1000 Res, vol.6, p.469, 2017.

A. F. Palazzo, T. A. Cook, A. S. Alberts, and G. G. Gundersen, mDia mediates Rho-regulated formation and orientation of stable microtubules, Nat. Cell Biol, vol.3, p.723, 2001.

V. Paranavitane, W. J. Coadwell, A. Eguinoa, P. T. Hawkins, and L. Stephens, LL5? is a phosphatidylinositol (3,4,5)-trisphosphate sensor that can bind the cytoskeletal adaptor, ?-filamin, J. Biol. Chem, vol.278, pp.1328-1335, 2003.

E. K. Paterson and S. A. Courtneidge, Invadosomes are coming: new insights into function and disease relevance, FEBS J, vol.285, pp.8-27, 2018.

S. Petry and R. D. Vale, Microtubule nucleation at the centrosome and beyond, Nat. Cell Biol, vol.17, p.1089, 2015.

A. S. Pfister, M. V. Hadjihannas, W. Rö-hrig, A. Schambony, and J. Behrens, Amer2 protein interacts with EB1 protein and adenomatous polyposis coli (APC) and controls microtubule stability and cell migration, J. Biol. Chem, vol.287, pp.35333-35340, 2012.

T. J. Proszynski and J. R. Sanes, Amotl2 interacts with LL5?, localizes to podosomes and regulates postsynaptic differentiation in muscle, J. Cell Sci, vol.126, pp.2225-2235, 2013.

T. J. Proszynski, J. Gingras, G. Valdez, K. Krzewski, and J. R. Sanes, Podosomes are present in a postsynaptic apparatus and participate in its maturation, Proc. Natl. Acad. Sci. USA, vol.106, pp.18373-18378, 2009.

E. Purev, L. Neff, W. C. Horne, and R. Baron, c-Cbl and Cbl-b act redundantly to protect osteoclasts from apoptosis and to displace HDAC6 from beta-tubulin, stabilizing microtubules and podosomes, Mol. Biol. Cell, vol.20, pp.4021-4030, 2009.

S. Quintin, S. Wang, J. Pontabry, A. Bender, F. Robin et al., Noncentrosomal epidermal microtubules act in parallel to LET-502/ROCK to promote C. elegans elongation, Development, vol.143, pp.160-173, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01538537

N. B. Rafiq, Y. Nishimura, S. V. Plotnikov, V. Thiagarajan, Z. Zhang et al., A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions, Nat. Mater, vol.18, pp.638-649, 2019.

S. L. Reck-peterson, W. B. Redwine, R. D. Vale, and A. P. Carter, The cytoplasmic dynein transport machinery and its many cargoes, Nat. Rev. Mol. Cell Biol, vol.19, pp.382-398, 2018.

Y. Ren, R. Li, Y. Zheng, and H. Busch, Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases, J. Biol. Chem, vol.273, pp.34954-34960, 1998.

X. Ren, W. B. Kiosses, and M. A. Schwartz, Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton, EMBO J, vol.18, pp.578-585, 1999.

R. Rid, N. Schiefermeier, I. Grigoriev, J. V. Small, and I. Kaverina, The last but not the least: the origin and significance of trailing adhesions in fibroblastic cells, Cell Motil. Cytoskelet, vol.61, pp.161-171, 2005.

A. J. Ridley and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, vol.70, pp.389-399, 1992.

G. Rinnerthaler, B. Geiger, and J. V. Small, Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules, J. Cell Biol, vol.106, pp.747-760, 1988.

A. Robert, P. Tian, S. A. Adam, M. Kittisopikul, K. Jaqaman et al., Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport, FASEB J, vol.33, pp.388-399, 2019.

C. Rooney, G. White, A. Nazgiewicz, S. A. Woodcock, K. I. Anderson et al., The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly, EMBO Rep, vol.11, pp.292-298, 2010.

A. Ruiz-saénz, L. Kremer, M. A. Alonso, J. Milla?, and I. Correas, Protein 4.1R regulates cell migration and IQGAP1 recruitment to the leading edge, J. Cell Sci, vol.124, pp.2529-2538, 2011.

Y. Sakamoto, B. Boe?da, and S. Etienne-manneville, APC binds intermediate filaments and is required for their reorganization during cell migration, J. Cell Biol, vol.200, pp.249-258, 2013.

B. A. Saykali and M. El-sibai, Invadopodia, regulation, and assembly in cancer cell invasion, Cell Commun. Adhes, vol.21, pp.207-212, 2014.

S. Seetharaman and S. Etienne-manneville, Integrin diversity brings specificity in mechanotransduction, Biol. Cell, vol.110, pp.49-64, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02058751

S. Shi, T. Cheng, L. Y. Jan, and Y. Jan, APC and GSK-3? are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity, Curr. Biol, vol.14, pp.2025-2032, 2004.

S. Stehbens and T. Wittmann, Targeting and transport: how microtubules control focal adhesion dynamics, J. Cell Biol, vol.198, pp.481-489, 2012.

S. J. Stehbens, M. Paszek, H. Pemble, A. Ettinger, S. Gierke et al., CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover, Nat. Cell Biol, vol.16, p.558, 2014.

Z. Sun, H. Tseng, S. Tan, F. Senger, L. Kurzawa et al., Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation, Nat. Cell Biol, vol.18, pp.941-953, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414459

A. Takesono, S. J. Heasman, B. Wojciak-stothard, R. Garg, and A. J. Ridley, Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells, PLoS ONE, vol.5, 2010.

S. F. Thurston, W. A. Kulacz, S. Shaikh, J. M. Lee, and J. W. Copeland, The ability to induce microtubule acetylation is a general feature of formin proteins, PLoS ONE, vol.7, 2012.

S. Tojkander, G. Gateva, and P. Lappalainen, Actin stress fibersassembly, dynamics and biological roles, J. Cell Sci, vol.125, pp.1855-1864, 2012.

B. Van-der-vaart, W. E. Van-riel, H. Doodhi, J. T. Kevenaar, E. A. Katrukha et al., , 2013.

, CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor, Dev. Cell, vol.27, pp.145-160

F. P. Van-horck, M. R. Ahmadian, L. C. Haeusler, W. H. Moolenaar, and O. Kranenburg, Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules, J. Biol. Chem, vol.276, pp.4948-4956, 2001.

G. Walko, M. J. Castanõ?n, and G. Wiche, Molecular architecture and function of the hemidesmosome, Cell Tissue Res, vol.360, pp.363-378, 2015.

T. Watanabe, S. Wang, J. Noritake, K. Sato, M. Fukata et al., Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration, Dev. Cell, vol.7, pp.871-883, 2004.

C. M. Waterman-storer, R. A. Worthylake, B. P. Liu, K. Burridge, and E. D. Salmon, Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts, Nat. Cell Biol, vol.1, pp.45-50, 1999.

Y. Wen, C. H. Eng, J. Schmoranzer, N. Cabrera-poch, E. J. Morris et al., EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nat. Cell Biol, vol.6, 2004.

S. E. Winograd-katz, R. Fa?ssler, B. Geiger, and K. R. Legate, The integrin adhesome: from genes and proteins to human disease, Nat. Rev. Mol. Cell Biol, vol.15, p.273, 2014.

J. Wojnacki, G. Quassollo, M. Marzolo, and A. Ca?eres, Rho GTPases at the crossroad of signaling networks in mammals: impact of RhoGTPases on microtubule organization and dynamics, Small GTPases, vol.5, 2014.

X. Wu, A. Kodama, and E. Fuchs, ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity, Cell, vol.135, pp.137-148, 2008.

J. Yan, M. Yao, B. T. Goult, and M. P. Sheetz, Talin dependent mechanosensitivity of cell focal adhesions, Cell. Mol. Bioeng, vol.8, pp.151-159, 2015.

Y. Yoshimura and H. Miki, Dynamic regulation of GEF-H1 localization at microtubules by Par1b/MARK2, Biochem. Biophys. Res. Commun, vol.408, pp.322-328, 2011.

J. Yue, M. Xie, X. Gou, P. Lee, M. D. Schneider et al., Microtubules regulate focal adhesion dynamics through MAP4K4, Dev. Cell, vol.31, pp.572-585, 2014.

K. Zaoui, K. Benseddik, P. Daou, D. Salaun, and A. Badache, ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells, Proc. Natl. Acad. Sci. USA, vol.107, pp.18517-18522, 2010.