B. ;. Antonny, C. M. Cardoso, L. Groth-pedersen, M. Høyer-hansen, T. Kirkegaard et al., Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells, Annu. Rev. Biochem, vol.80, p.4424, 2009.

E. Cebollero, A. Van-der-vaart, M. Zhao, E. Rieter, D. J. Klionsky et al., Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion, Curr. Biol, vol.22, pp.1545-1553, 2012.

Y. Chen and L. Yu, Recent progress in autophagic lysosome reformation, Traffic, vol.18, pp.358-361, 2017.

J. Cheng, A. Fujita, H. Yamamoto, T. Tatematsu, S. Kakuta et al., Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries, Nat Commun, vol.5, p.3207, 2014.

H. Cheong and D. J. Klionsky, Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae, Autophagy, vol.4, pp.724-726, 2008.

H. Cheong, U. Nair, J. Geng, and D. J. Klionsky, The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae, Mol. Biol. Cell, vol.19, pp.668-681, 2008.

H. Cheong, T. Yorimitsu, F. Reggiori, J. E. Legakis, C. Wang et al., Atg17 regulates the magnitude of the autophagic response, Mol. Biol. Cell, vol.16, pp.3438-3453, 2005.

N. Chiaruttini, L. Redondo-morata, A. Colom, F. Humbert, M. Lenz et al., Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation, Cell, vol.163, pp.866-879, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01238262

L. Christ, C. Raiborg, E. M. Wenzel, C. Campsteijn, and H. Stenmark, Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery, Trends Biochem Sci, vol.42, pp.42-56, 2017.

J. E. Coyle, S. Qamar, K. R. Rajashankar, and D. B. Nikolov, Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding, Neuron, vol.33, pp.63-74, 2002.

C. De-duve, The lysosome, Sci. Am, vol.208, pp.64-72, 1963.

J. Diao, R. Liu, Y. Rong, M. Zhao, J. Zhang et al., ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes, Nature, vol.520, pp.563-566, 2015.

I. Dikic and Z. Elazar, Mechanism and medical implications of mammalian autophagy, Nat. Rev. Mol. Cell Biol, vol.60, p.604, 2018.

Y. A. Domanov, S. Aimon, G. E. Toombes, M. Renner, F. Quemeneur et al., Mobility in geometrically confined membranes, Proc. Natl. Acad. Sci. USA, vol.108, pp.12605-12610, 2011.

H. C. Dooley, M. Razi, H. E. Polson, S. E. Girardin, M. I. Wilson et al., WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12-5-16L1, vol.55, pp.238-252, 2014.

W. Fan, A. Nassiri, and Q. Zhong, Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L), Proc. Natl. Acad. Sci. USA, vol.108, pp.7769-7774, 2011.

J. Folch, M. Lees, S. Stanley, and G. H. , A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem, vol.226, pp.497-509, 1957.

D. Fracchiolla, J. Sawa-makarska, B. Zens, A. Ruiter, . De et al., Mechanism of cargo-directed Atg8 conjugation during selective autophagy, p.18799, 2016.

N. Fujita, M. Hayashi-nishino, H. Fukumoto, H. Omori, A. Yamamoto et al., An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure, Mol. Biol. Cell, vol.19, pp.4651-4659, 2008.

L. Ge, D. Melville, M. Zhang, and R. Schekman, The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis, p.947, 2013.

L. Ge, M. Zhang, and R. Schekman, Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment, vol.3, p.4135, 2014.

L. Ge, M. Zhang, S. J. Kenny, D. Liu, M. Maeda et al., Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis, EMBO Rep, vol.18, pp.1586-1603, 2017.

J. Geng and D. J. Klionsky, The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy, EMBO Rep, vol.9, pp.859-864, 2008.

S. H. Gerber, J. Rah, S. Min, X. Liu, H. De-wit et al., Conformational switch of syntaxin-1 controls synaptic vesicle fusion, Science, vol.321, pp.1507-1510, 2008.

R. Gómez-sánchez, J. Rose, R. Guimarães, M. Mari, D. Papinski et al., Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores, J. Cell Biol, vol.144, 2018.

M. Graef, J. R. Friedman, C. Graham, M. Babu, and J. Nunnari, ER exit sites are physical and functional core autophagosome biogenesis components, Mol. Biol. Cell, vol.24, pp.2918-2931, 2013.

T. Hanada, N. N. Noda, Y. Satomi, Y. Ichimura, Y. Fujioka et al., The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy, J. Biol. Chem, vol.282, pp.37298-37302, 2007.

T. M. Harding, K. A. Morano, S. V. Scott, and D. J. Klionsky, Isolation and Characterization of Yeast Mutants in the Cytoplasm to Vacuole Protein Targeting Pathway, 1995.

, J. Cell Biol, vol.131, pp.591-602

G. J. Hardy, R. Nayak, and S. Zauscher, Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion, Curr Opin Colloid Interface Sci, vol.18, pp.448-458, 2013.

M. Hayashi-nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori et al., A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation, Nat. Cell Biol, vol.11, pp.1433-1437, 2009.

C. He, H. Song, T. Yorimitsu, I. Monastyrska, W. Yen et al., Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast, J. Cell Biol, vol.175, pp.925-935, 2006.

J. M. Hernandez, A. Stein, E. Behrmann, D. Riedel, A. Cypionka et al., Membrane fusion intermediates via directional and full assembly of the SNARE complex, Science, vol.336, pp.1581-1584, 2012.

E. Hirata, Y. Ohya, and K. Suzuki, Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae, PLoS ONE, vol.12, 2017.

R. Ho and C. Stroupe, The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane, Mol. Biol. Cell, vol.26, pp.2655-2663, 2015.

R. Ho and C. Stroupe, The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction, Traffic, vol.17, pp.1078-1090, 2016.

N. Hosokawa, T. Hara, T. Kaizuka, C. Kishi, A. Takamura et al., Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol. Biol. Cell, vol.20, pp.1981-1991, 2009.

Y. Ichimura, Y. Imamura, K. Emoto, M. Umeda, T. Noda et al., In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy, J. Biol. Chem, vol.279, pp.40584-40592, 2004.

R. L. Knorr, R. Lipowsky, R. ;. Dimova, N. Chiaruttini, L. Redondo-morata et al., Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis, Nat. Cell Biol, vol.19, pp.787-798, 2015.

S. Miller, B. Tavshanjian, A. Oleksy, O. Perisic, B. T. Houseman et al., Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34, Science, vol.327, pp.1638-1642, 2010.

N. Mizushima, A. Kuma, Y. Kobayashi, A. Yamamoto, M. Matsubae et al., Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate, J. Cell. Sci, vol.116, pp.1679-1688, 2003.

N. Mizushima, T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii et al., A protein conjugation system essential for autophagy, Nature, vol.395, pp.395-398, 1998.

V. Muhlinen, N. Akutsu, M. Ravenhill, B. J. Foeglein, Á. Bloor et al., LC3C, Bound Selectively by a Noncanonical LIR Motif in NDP52, Is Required for Antibacterial Autophagy. Mol Cell, vol.48, pp.329-342, 2012.

B. Mui and M. Hope, Formation of Large Unilamellar Vesicles by Extrusion, Liposome Technology, vol.I, pp.55-65, 2009.

U. Nair, A. Jotwani, J. Geng, N. Gammoh, D. Richerson et al., SNARE proteins are required for macroautophagy, Cell, vol.146, pp.290-302, 2011.

U. Nair, W. Yen, M. Mari, Y. Cao, Z. Xie et al., A role for Atg8-PE deconjugation in autophagosome biogenesis, Autophagy, vol.8, pp.780-793, 2012.

H. Nakatogawa, Y. Ichimura, and Y. Ohsumi, Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion, Cell, vol.130, pp.165-178, 2007.

A. C. Nascimbeni, P. Codogno, and E. Morel, Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics, FEBS J, vol.284, pp.1267-1278, 2017.

S. Nath, J. Dancourt, V. Shteyn, G. Puente, W. M. Fong et al., Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3, Nat. Cell Biol, vol.16, pp.415-424, 2014.

M. Ngu, E. Hirata, and K. Suzuki, Visualization of Atg3 during autophagosome formation in Saccharomyces cerevisiae, J. Biol. Chem, vol.290, pp.8146-8153, 2015.

N. Nguyen, V. Shteyn, and T. J. Melia, Sensing Membrane Curvature in Macroautophagy, J Mol Biol, vol.429, pp.457-472, 2017.

T. N. Nguyen, B. S. Padman, J. Usher, V. Oorschot, G. Ramm et al., Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation, J. Cell Biol, vol.215, pp.857-874, 2016.

N. N. Noda, Y. Ohsumi, and F. Inagaki, Atg8-family interacting motif crucial for selective autophagy, FEBS Lett, vol.584, pp.1379-1385, 2010.

Y. Ohashi and S. Munro, Membrane delivery to the yeast autophagosome from the Golgi-endosomal system, Mol. Biol. Cell, vol.21, pp.3998-4008, 2010.

J. M. Park, C. H. Jung, M. Seo, N. M. Otto, D. Grunwald et al., The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14, Autophagy, vol.12, pp.547-564, 2016.

J. M. Park, M. Seo, C. H. Jung, D. Grunwald, M. Stone et al., ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction, Autophagy, vol.14, pp.584-597, 2018.

F. Paumet, V. Rahimian, and J. E. Rothman, The specificity of SNARE-dependent fusion is encoded in the SNARE motif, Proc. Natl. Acad. Sci. USA, vol.101, pp.3376-3380, 2004.

N. Pengo, A. Agrotis, K. Prak, J. Jones, and R. Ketteler, A reversible phosphoswitch mediated by ULK1 regulates the activity of autophagy protease ATG4B, Nat Commun, vol.8, p.9, 2017.

M. A. Poirier, W. Xiao, J. C. Macosko, C. Chan, Y. K. Shin et al., The synaptic SNARE complex is a parallel four-stranded helical bundle, Nat. Struct. Biol, vol.5, pp.765-769, 1998.

T. Proikas-cezanne, Z. Takacs, P. Dönnes, and O. Kohlbacher, WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome, J. Cell. Sci, vol.128, pp.207-217, 2015.

T. Proikas-cezanne, S. Waddell, A. Gaugel, T. Frickey, A. Lupas et al., WIPI-1? (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy, Oncogene, vol.23, pp.9314-9325, 2004.

C. Puente, R. C. Hendrickson, and X. Jiang, Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy, J. Biol. Chem, vol.291, pp.6026-6035, 2016.

M. J. Ragusa, R. E. Stanley, and J. H. Hurley, Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis, Cell, vol.151, pp.1501-1512, 2012.

Y. Rao, M. G. Perna, B. Hofmann, V. Beier, and T. Wollert, The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy, Nat Commun, vol.7, p.10338, 2016.

B. Ravikumar, R. Duden, and D. C. Rubinsztein, Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy, Hum. Mol. Genet, vol.11, pp.1107-1117, 2002.

G. Rayan, J. Guet, N. Taulier, F. Pincet, and W. Urbach, Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromolecules, Sensors (Basel), vol.10, pp.5927-5948, 2010.

F. Reggiori and C. Ungermann, Autophagosome Maturation and Fusion, J Mol Biol, vol.429, pp.486-496, 2017.

F. Reggiori, T. Shintani, U. Nair, and D. J. Klionsky, Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts, Autophagy, vol.1, pp.101-109, 2005.

F. Reggiori, C. Wang, U. Nair, T. Shintani, H. Abeliovich et al., Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae, Mol. Biol. Cell, vol.15, pp.2189-2204, 2004.

H. Renard, L. Johannes, and P. Morsomme, Increasing Diversity of Biological Membrane Fission Mechanisms, Trends Cell Biol, vol.28, pp.274-286, 2018.

M. F. Rexach and R. W. Schekman, Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles, J. Cell Biol, vol.114, pp.219-229, 1991.

S. E. Rieder and S. D. Emr, A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole, Mol. Biol. Cell, vol.8, pp.2307-2327, 1997.

J. Ries and P. Schwille, New concepts for fluorescence correlation spectroscopy on membranes, Phys Chem Chem Phys, vol.10, pp.3487-3497, 2008.

V. V. Rogov, A. Stolz, A. C. Ravichandran, D. O. Rios-szwed, H. Suzuki et al., Structural and functional analysis of the GABARAP interaction motif (GIM), EMBO Rep, vol.18, pp.1382-1396, 2017.

V. Rogov, V. Dötsch, T. Johansen, and V. Kirkin, Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy, Mol Cell, vol.53, pp.167-178, 2014.

J. Romanov, M. Walczak, I. Ibiricu, S. Schüchner, E. Ogris et al., Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation, EMBO J, vol.31, pp.4304-4317, 2012.

J. Sanchez-wandelmer, F. Kriegenburg, S. Rohringer, M. Schuschnig, R. Gómez-sánchez et al., Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation, Nat Commun, vol.8, p.295, 2017.

J. Sawa-makarska, C. Abert, J. Romanov, B. Zens, I. Ibiricu et al., Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy, Nat. Cell Biol, vol.16, pp.425-433, 2014.

M. B. Schaaf, T. G. Keulers, M. A. Vooijs, and K. M. Rouschop, , 2016.

, LC3/GABARAP family proteins: autophagy-(un)related functions, FASEB J, vol.30, pp.3961-3978

D. H. Schott, R. N. Collins, and A. Bretscher, Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length, J. Cell Biol, vol.156, pp.35-39, 2002.

T. Sekito, T. Kawamata, R. Ichikawa, K. Suzuki, and Y. Ohsumi, Atg17 recruits Atg9 to organize the pre-autophagosomal structure, Genes Cells, vol.14, pp.525-538, 2009.

E. Sezgin and P. Schwille, Model membrane platforms to study protein-membrane interactions, Mol. Membr. Biol, vol.29, pp.144-154, 2012.

T. Shintani, W. P. Huang, P. E. Stromhaug, and D. J. Klionsky, Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway, Dev. Cell, vol.3, pp.825-837, 2002.

R. Simmons, Molecular motors: Single-molecule mechanics, Curr. Biol, vol.6, pp.392-394, 1996.

Y. Sou, I. Tanida, M. Komatsu, T. Ueno, and E. Kominami, Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16, J. Biol. Chem, vol.281, pp.3017-3024, 2006.

D. Stadel, V. Millarte, K. D. Tillmann, J. Huber, B. Tamin-yecheskel et al., TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export, Mol Cell, vol.60, pp.89-104, 2015.

A. Stein, G. Weber, M. C. Wahl, and R. Jahn, Helical extension of the neuronal SNARE complex into the membrane, Nature, vol.460, pp.525-528, 2009.

A. Stolz, M. Putyrski, I. Kutle, J. Huber, C. Wang et al., Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins, EMBO J, vol.36, pp.549-564, 2017.

C. Stroupe, C. M. Hickey, J. Mima, A. S. Burfeind, and W. Wickner, Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.17626-17633, 2009.

K. Suzuki, M. Akioka, C. Kondo-kakuta, H. Yamamoto, and Y. Ohsumi, Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae, J. Cell. Sci, vol.126, pp.2534-2544, 2013.

K. Suzuki, T. Kirisako, Y. Kamada, N. Mizushima, T. Noda et al., The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation, EMBO J, vol.20, pp.5971-5981, 2001.

K. Suzuki, C. Kondo, M. Morimoto, and Y. Ohsumi, Selective transport of alphamannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J. Biol. Chem, vol.285, pp.30019-30025, 2010.

K. Suzuki, Y. Kubota, T. Sekito, and Y. Ohsumi, Hierarchy of Atg proteins in preautophagosomal structure organization, Genes Cells, vol.12, pp.209-218, 2007.

S. W. Suzuki, H. Yamamoto, Y. Oikawa, C. Kondo-kakuta, Y. Kimura et al., Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation, Proc. Natl. Acad. Sci. USA, vol.112, pp.3350-3355, 2015.

K. Svoboda and S. M. Block, Force and velocity measured for single kinesin molecules, Cell, vol.77, pp.773-784, 1994.

Y. Takahashi, H. He, Z. Tang, T. Hattori, Y. Liu et al., An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure, Nat Commun, vol.9, p.2855, 2018.

N. Thonghin, V. Kargas, J. Clews, and R. C. Ford, Cryo-electron microscopy of membrane proteins, 2018.

M. Thumm, R. Egner, B. Koch, M. Schlumpberger, M. Straub et al., Isolation of Autophagocytosis Mutants of Saccharomyces-Cerevisiae, 1994.

, FEBS Lett, vol.349, pp.275-280

K. Tsuboyama, I. Koyama-honda, Y. Sakamaki, M. Koike, H. Morishita et al., The ATG conjugation systems are important for degradation of the inner autophagosomal membrane, Science, vol.354, pp.1036-1041, 2016.

M. Tsukada and Y. Ohsumi, Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae, FEBS Lett, vol.333, pp.169-174, 1993.

H. Wang, H. Sun, X. Zhu, L. Zhang, J. Albanesi et al., GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion, Proc. Natl. Acad. Sci. USA, vol.112, pp.7015-7020, 2015.

H. Weidberg, T. Shpilka, E. Shvets, A. Abada, F. Shimron et al., LC3 and GATE-16 N Termini Mediate Membrane Fusion Processes Required for Autophagosome Biogenesis, Dev. Cell, vol.20, pp.444-454, 2011.

H. Weidberg, E. Shvets, T. Shpilka, F. Shimron, V. Shinder et al., LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis, EMBO J, vol.29, pp.1792-1802, 2010.

E. M. Wenzel, S. W. Schultz, K. O. Schink, N. M. Pedersen, V. Nähse et al., Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation, Nat Commun, vol.9, p.2932, 2018.

P. Wild, D. G. Mcewan, and I. Dikic, The LC3 interactome at a glance, J. Cell. Sci, vol.127, pp.3-9, 2013.

T. Wollert, Reconstituting multivesicular body biogenesis with purified components, Methods Cell Biol, vol.108, pp.73-92, 2012.

T. Wollert and J. H. Hurley, Molecular mechanism of multivesicular body biogenesis by ESCRT complexes, Nature, vol.464, pp.864-869, 2010.

T. Wollert, C. Wunder, J. Lippincott-schwartz, and J. H. Hurley, Membrane scission by the ESCRT-III complex, Nature, vol.458, pp.172-177, 2009.

B. Wurzer, G. Zaffagnini, D. Fracchiolla, E. Turco, C. Abert et al., Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy, vol.4, p.8941, 2015.

Z. Xie, Z. Xie, U. Nair, U. Nair, D. J. Klionsky et al., Atg8 controls phagophore expansion during autophagosome formation, Mol. Biol. Cell, vol.19, pp.3290-3298, 2008.

H. Yamamoto, Y. Fujioka, S. W. Suzuki, D. Noshiro, H. Suzuki et al., The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes, vol.38, pp.86-99, 2016.

H. Yamamoto, S. Kakuta, T. M. Watanabe, A. Kitamura, T. Sekito et al., Atg9 vesicles are an important membrane source during early steps of autophagosome formation, J. Cell Biol, vol.198, pp.219-233, 2012.

J. Yang, X. Q. Chai, X. X. Zhao, and X. Li, Comparative genomics revealed the origin and evolution of autophagy pathway, Journal of Systematics and Evolution, vol.55, pp.71-82, 2017.

T. Yorimitsu and D. J. Klionsky, Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway, Mol. Biol. Cell, vol.16, pp.1593-1605, 2005.

Z. Yu, T. Ni, B. Hong, H. Wang, F. Jiang et al., Dual roles of Atg8-PE deconjugation by Atg4 in autophagy, vol.8, pp.883-892, 2012.