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Summary Statement 

Autophagy is a versatile recycling system that ensures turnover of cytoplasmic material. This 

review highlights in vitro reconstitution studies that helped to discover fundamental mechanisms 

of the pathway.  
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Abstract 

Autophagy is one of the most elaborative membrane remodeling systems in eukaryotic cells. Its 

major function is to recycle cytoplasmic material by delivering it to lysosomes for degradation. To 

achieve this, a membrane cisterna is formed that gradually captures cargo such as organelles or 

protein aggregates. The diversity of cargo requires autophagy to be highly versatile to adapt the 

shape of the phagophore to its substrate. Upon closure of the phagophore, a double-membrane 

surrounded autophagosome is formed that eventually fuses with lysosomes. In response to 

environmental cues such as cytotoxicity or starvation, bulk cytoplasm can be captured and 

delivered to lysosomes. Autophagy thus supports cellular survival under adverse conditions. 

During the past decades, groundbreaking genetic and cell biological studies identified the core 

machinery involved in the process. In this review, we are focusing on in vitro reconstitution 

approaches to decipher the details and spatiotemporal control of autophagy and how they 

contributed to our current understanding of the pathways in yeast and mammals. We highlight 

studies that revealed the function of the autophagy machinery at a molecular level with respect to 

its capacity to remodel membranes.   
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Introduction 

Eukaryotic cells have evolved a highly conserved and sophisticated degradation and recycling 

system for damaged or superfluous organelles, termed macroautophagy (autophagy in the 

following) (Dikic and Elazar, 2018). This system requires cargo selection in a spatiotemporally 

defined and regulated fashion (Khaminets et al., 2016) and the degradation of cargo with very 

different sizes and shapes, demanding versatility. The complexity of these requirements is 

reflected in the complexity of autophagy, which involves the coordinated action of more than 40 

dedicated autophagy-related (Atg) proteins (Mercer et al., 2018) that collaborate and are 

intertwined with a large number of cellular signaling, trafficking, and stress response pathways 

(Davis et al., 2017).  

Autophagy was first characterized at a morphological and ultrastructural level as a pathway that 

delivers cytoplasm to lysosomes (Ashford and Porter, 1962; De Duve, 1963) and seminal work 

identified a set of Atg proteins using a genetic screen in yeast (Tsukada and Ohsumi, 1993), 

followed by related screens that expanded the repertoire of Atg proteins (Harding et al., 1995; 

Thumm et al., 1994). The identification of human homologs of yeast Atg proteins established that 

autophagy is conserved in higher eukaryotes (Kabeya et al., 2000; Mizushima et al., 1998). 

Furthermore, autophagy is involved in the onset of various human diseases such as cancer and 

neurodegeneration that revealed the importance of the pathway in maintaining cellular homeostasis 

under normal conditions and in response to cytotoxic stress (Liang et al., 1999; Ravikumar et al., 

2002).  

Although yeast and human autophagy pathways are conserved, there are significant mechanistic 

differences and the human autophagic machinery is much more elaborated compared to its yeast 

counterpart. In yeast, autophagy is initiated at the phagophore assembly site (PAS) at the vacuole 

and involves activation, assembly and recruitment of the Atg1-kinase complex (Fig. 1A) (Cheong 

et al., 2005; Kabeya et al., 2005; Kabeya et al., 2009). Following its activation, the Atg1-kinase 

complex recruits Atg9 vesicles to the PAS (Fig. 1A) (Mari et al., 2010; Rao et al., 2016; Sekito et 

al., 2009). These vesicles fuse to give rise to a precursor membrane, termed phagophore (Nair et 

al., 2011; Yamamoto et al., 2012). The expansion of these membrane cisternae allows cytoplasm 

to be sequestered and enclosed. The high demand of lipids that are needed for phagophore 

expansion requires a constant supply with membranes of various origins including the ER, the 

Golgi, the ER-Golgi intermediate compartment and mitochondria (Graef et al., 2013; Meiling-
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Wesse et al., 2005; Ohashi and Munro, 2010; Reggiori et al., 2005). Moreover, the early 

phagophore is enriched in phosphatidylinositol(3)phosphate (PtdIns(3)P) through the action of an 

autophagy-specific class III PtdIns(3)-kinase complex (Fig. 1B). The recruitment of this lipid-

kinase to the PAS is mediated by an interaction of Atg13 with the PtdIns(3)-kinase subunit Atg14 

(Jao et al., 2013; Suzuki et al., 2007). 

Enrichment of the phagophore with PtdIns(3)P allows PtdIns(3)P-binding proteins such as the 

yeast β‐propellers that bind phosphoinositides (PROPPIN)-repeat containing Atg18 and Atg21 to 

be recruited (Nascimbeni et al., 2017). Atg21 initiates the transition from phagophore initiation to 

phagophore expansion by recruiting Atg16 (Juris et al., 2015), whereas Atg18, in conjugation with 

its interaction partner Atg2, stimulates phagophore expansion by establishing ER-phagophore 

contact sites (Gómez-Sánchez et al., 2018). The expansion of the phagophore membrane is 

regulated by a ubiquitin (Ub)-like conjugation machinery that catalyzes the covalent attachment 

of the Ub-like protein Atg8 to phosphatidylethanolamine (PE) within the phagophore (Fig. 1B) 

(Ichimura et al., 2000). This reaction is initiated by an Atg4-dependent priming of Atg8 through 

proteolytic cleavage of its C-terminal residue (Kirisako et al., 2000). The conjugation of Atg8 itself 

involves sequential activity of the E1-like Atg7 and the E2-like Atg3 enzymes as well as the E3-

like ligase complex Atg12–Atg5-Atg16 (Geng and Klionsky, 2008). Apart from its function during 

phagophore expansion, Atg8 also coordinates selection of cargo through its interaction with cargo 

receptors such as Atg19 or Atg32 (Fig. 1C). Moreover, Atg8 promotes sealing of phagophores and 

fusion with the yeast vacuole (Fig. 1D, E) (Abeliovich et al., 2000; Kaufmann et al., 2014; Kondo-

Okamoto et al., 2012; Nakatogawa et al., 2007; Noda et al., 2010; Suzuki et al., 2010; Xie et al., 

2008). Shortly before fusion of the two organelles occur, the cytosolic accessible pool of Atg8 is 

cleaved from the membrane by Atg4 (Fig. 1D) (Abreu et al., 2017; Kirisako et al., 2000; Yu et al., 

2012). This ‘uncoating reaction’ is followed by tethering of autophagosomes to the vacuole 

through the homotypic fusion and vacuole protein sorting (HOPS) complex and SNARE-mediated 

fusion of the outer autophagosomal and the vacuolar membranes (Fig. 1E) (Nair et al., 2011; 

Rieder and Emr, 1997). Although autophagy is well understood at a molecular level in yeast, 

mechanistic insights into the process as well as its spatiotemporal regulation are still limited. The 

core autophagy machinery is highly conserved and close homologs of the yeast proteins are 

expressed in human cells (Yang et al., 2017) (see Box 1). Significant mechanistical differences 

between the pathways in these species reflect regulatory requirements that are needed for 
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cooperation of cells in multicellular organisms (Boya et al., 2018) as well as autophagy-unrelated 

functions of ATG proteins in higher eukaryotes (Schaaf et al., 2016). 

Many insights into the nucleation of autophagosomes, the selection of cargo and its tethering to 

autophagic membranes as well as autophagosome completion and fusion with lysosomes have 

been revealed by in vitro reconstitution methods. The advantages of in vitro approaches in 

characterizing complex biological pathways were first recognized by Günter Blobel, who 

developed a cell-free system to recapitulate the translocation of proteins across the ER membrane 

(Blobel and Sabatini, 1971). A similar approach was used in seminal studies by Randy Schekman, 

which led to the identification of components of the secretory pathway (Rexach and Schekman, 

1991). Advances in membrane physics and recombinant protein production made it possible to 

reconstitute entire biological pathways from purified components in the test tube. Here, we 

highlight such reconstitution approaches and summarize how they contributed to our current 

understanding of autophagy in yeast and humans. 

 

Out of nowhere - nucleation of the phagophore in yeast and humans 

The coordinated activity of the Atg1 (Ulk1)-kinase complex, the PtdIns(3)-kinase complex and the 

Atg9 compartment is required to initiate autophagy in yeast and humans. The two subunits Atg17 

and Atg11 are major scaffolds for the assembly of two distinct Atg1-kinase complexes that 

function in selective (Atg11) or non-selective (Atg17) autophagy in yeast (Kabeya et al., 2005; 

Kabeya et al., 2009; Kamber et al., 2015; Yorimitsu and Klionsky, 2005). Moreover, both proteins 

recruit the transmembrane protein Atg9 to the PAS, linking autophagy initiation to nucleation of 

the phagophore (He et al., 2006; Sekito et al., 2009). First insights into membrane-binding 

properties of the Atg1-kinase complex came from in vitro reconstitutions of a minimal complex, 

comprising Atg17, Atg31, Atg29 as well as fragments of Atg1 and Atg13 (Ragusa et al., 2012). 

Using Folch liposomes with different diameters as membrane substrate (see Box 2), the C-terminal 

domain of Atg1 was found to bind membranes in a curvature-dependent manner, preferring 

liposomes with high curvature that corresponds to vesicle diameters of ~30 nm (Ragusa et al., 

2012). Atg9 vesicles that are recruited by the Atg1-kinase complex in vivo possess similar 

diameters, suggesting that curvature sensing by Atg1 contributes to the selective recruitment of 

these vesicles. 
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Furthermore, mutational analysis and immunoprecipitation analysis suggested that both Atg17 and 

Atg13 bind Atg9 (Sekito et al., 2009; Suzuki et al., 2015), although which of the two proteins 

directly interacted with Atg9 was unclear. It was addressed by in vitro reconstitutions using 

artificial Atg9 vesicles and purified subunits of the Atg1-kinase complex: Atg9 vesicles were 

generated by incorporating recombinant and purified Atg9core, which comprised the highly 

conserved transmembrane region of Atg9 but lacked the unstructured N- and C-termini, into small 

unilamellar vesicles (SUVs) (see Box 2). Floatation experiments of these vesicles with purified 

Atg1-kinase complex subunits (see Box 3) revealed that Atg17 physically interacts with Atg9, 

suggesting that binding of Atg9 by the Atg1-kinase complex mainly depends on Atg17 (Rao et al., 

2016). Furthermore, the crystal structure of the Atg17-Atg31-Atg29 subcomplex revealed two 

interesting properties: first, Atg17 is a highly elongated crescent-shaped molecule that forms tail-

to-tail dimers; second, Atg31 directly binds Atg17 and both Atg31 and Atg29 occupy the central 

region of the Atg17 crescent (Ragusa et al., 2012). A plausible explanation for this unusual 

architecture was, again, revealed by reconstitution approaches (Rao et al., 2016). The Atg17 dimer 

was found to bind two Atg9 vesicles independently and electron microscopy revealed that these 

vesicles were tightly tethered to each other (Fig. 1A). The Atg17-Atg31-Atg29 subcomplex was, 

however, not able to tether such vesicles, although the subcomplex retained a limited capacity to 

bind Atg9. This suggests that the prominent localization of Atg31 and Atg29 that has been 

observed in the crystal structure inhibits binding of Atg17 to Atg9. 

Upon induction of autophagy, the pentameric Atg1-kinase complex assembles at the PAS in vivo 

(Kabeya et al., 2005). In agreement with this observation, interaction studies with purified 

components revealed that this complex binds Atg9 vesicles with a 2:2 stoichiometry - as it has 

been observed for Atg17 - and tethers Atg9 vesicles in vitro (Fig. 1A) (Rao et al., 2016). The 

combination of in vivo experiments, crystal structures and in vitro reconstitution of the Atg1-kinase 

complex thus provided a detailed model for its function during autophagy initiation. However, the 

high demand of lipids for nucleation and expansion of autophagosomes cannot be fulfilled by just 

two Atg9 vesicles, suggesting early PAS organization by more than one Atg1-kinase complex and 

its multiple tethered Atg9 vesicles. A combinatorial in vitro and in vivo approach revealed that 

Atg13 has two Atg17 binding sites. One of these sites activates Atg17-Atg31-Atg29 within the 

same complex whereas the other binding site links two Atg1-kinase complexes together by binding 

Atg17 of another complex (Yamamoto et al., 2016). This crosslinking allows the formation of 
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larger super-molecular assemblies and provides thus the means to recruit and tether multiple Atg9 

vesicles in order to nucleate the phagophore. This model is supported by fluorescence-based 

quantifications in vivo, which demonstrated that twenty to sixty Atg1-kinase complexes are 

recruited to the PAS upon induction of autophagy (Geng et al., 2008; Köfinger et al., 2015; Lin et 

al., 2018). 

The inhibition of Atg17 by Atg31-Atg29 limits its function to conditions under which autophagy 

is induced. However, selective cargo such as the vacuolar aminopeptidase 1 (Ape1) is delivered to 

the vacuole even under non-induced conditions and independently of Atg17 (Shintani et al., 2002). 

The initiation complex in selective autophagy consists of Atg1, Atg13 and the scaffolding protein 

Atg11 (Kim et al., 2001). In vitro reconstitution experiments using Atg11 that was purified from 

yeast cell lysates indicated that the major function of Atg11 involves activation of Atg1. Using an 

engineered Atg1-kinase that metabolized an ATPS analog instead of conventional ATP, this study 

revealed that the activation of Atg1 depends not only on Atg11, but requires the formation of a 

complex of Atg1 with cargo, cargo receptor, and Atg11 (Kamber et al., 2015). However, the kinase 

activity of Atg1 was previously found to be important for autophagy expansion, but dispensible 

for the nucleation of autophagosomes (Cheong and Klionsky, 2008). This suggests that the Atg1-

Atg11 complex has two functions in autophagy: promoting autophagy initiation and regulating 

phagophore expansion. The function of Atg11 during nucleation of selective autophagosomes 

might depend on properties that are similar to those of Atg17, including the recruitment of Atg9 

vesicles to the PAS (Backues and Klionsky, 2012). 

 

A lipid diet for autophagy - expansion of the phagophore membrane 

A key step during the phagophore initiation to expansion transition is the acquisition of Atg8/LC3, 

a process that involves recruitment of the conjugation machinery to the phagophore. Key factors 

in this are the two PtdIns(3)P-binding proteins WIPI2 (human) and Atg21 (yeast) that recruit 

ATG16L1/Atg16 to the phagophore (Fig. 2A). Both proteins thus promote expansion by coupling 

Atg8/LC3 lipidation to PtdIns(3)P-containing phagophores (Dooley et al., 2014; Juris et al., 2015). 

In order to identify the membrane source that becomes substrate for ATG8 conjugation, a cell-free 

reconstitution approach combined cytosol fractions of wildtype cells with membrane fractionation 

from ATG5-knockout cell lysates (Ge et al., 2013). Due to the absence of ATG5, these membranes 
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were devoid of LC3-PE. Combining them with wildtype cytosol complemented ATG5 and 

initiated lipidation of LC3. The fraction that was enriched in membranes from the ER-Golgi 

intermediate compartment was found to be the best substrate for LC3-lipidation, implicating that 

this compartment donates membrane for autophagosome biogenesis (Ge et al., 2013). By applying 

a similar approach, coat protein complex II (COPII) has been found to bud vesicles from the ER-

Golgi intermediate compartment upon autophagy induction, suggesting that such vesicles 

contribute to the formation of autophagosomes (Ge et al., 2014). Furthermore, several other studies 

reported that COPII is required for initiation and expansion of autophagosomes (Fig. 2B) (Ge et 

al., 2017; Graef et al., 2013; Stadel et al., 2015). Whether COPII vesicles transport membranes 

from the ER to autophagosomes remains, however, to be investigated. 

The most likely region of the phagophore to which COPII and other donor vesicles might fuse is 

its highly bent membrane at the phagophore rim (Nguyen et al., 2017). This suggests that factors 

that are involved in this process are targeted to this membrane region by sensing membrane 

curvature (Fig. 2B,D). The localization of Atg proteins at the phagophore in yeast was analyzed 

by inducing the assembly of a giant ApeI substrate through overexpression of ApeI. Under these 

conditions, a large spherical ApeI structure is formed in the cytoplasm at which the phagophore 

membrane could be visualized. It was shown that subunits of the Atg1-kinase and PtdIns(3)-kinase 

complexes as well as Atg9 colocalize with the edges of the phagophore, whereas Atg1 itself and 

the Ub-like conjugation system cover the entire membrane (Suzuki et al., 2013). Thus, autophagy 

initiation complexes are found exclusively at the edges of phagophores, whereas the phagophore 

expansion machinery is more or less evenly distributed on yeast phagophores. The spatially 

restricted localization of Atg17 and Atg9 implies that Atg17 tethers Atg9 vesicles not only to each 

other upon autophagy induction, but also to the phagophore rim during expansion (Fig. 2B). 

The localization of the PtdIns(3)-kinase complex to the rim of phagophores can be explained by 

curvature sensing motifs in VPS34 and ATG14 that have been identified in vitro using large 

unilamellar vesicles (LUVs) with different sizes (Fan et al., 2011; Miller et al., 2010). The 

curvature sensing property of ATG14 was found to be counteracted by increasing concentrations 

of PtdInsPs. This suggests that during autophagy initiation, a positive feedback loop enriches 

ATG14 at the PtdIns(3)P-containing omegasome, whereas during phagophore expansion, 

incoming PtdIns from donor vesicles are phosphorylated in a concerted manner at the phagophore 

rim (Fan et al., 2011) (Fig. 2C). 
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Interestingly, membrane curvature sensing is not only restricted to components of the initiation 

machinery: an in vitro reconstitution of the human Ub-conjugation machinery identified ATG3 as 

a curvature sensor. As shown for ATG14, ATG3 contains an amphipathic lipid packing sensor 

(ALPS) motif which forms, upon contact with lipid bilayers, an amphipathic helix that partially 

inserts into membranes (Nath et al., 2014). The penetration of this helix is promoted by lipid 

packaging defects in the bilayer of highly curved membranes, explaining why such motifs are 

curvature sensors (Antonny, 2011; Bigay et al., 2005) (Fig. 2D). The localization of ATG3 at the 

phagophore rim spatially restricts conjugation of ATG8, which allows incoming membranes 

during expansion to be decorated with ATG8 in a spatiotemporally concerted manner. Moreover, 

ATG8 is found on both membranes of the phagophore but the high curvature of its rim forms an 

effective diffusion barrier for lipids and thus for lipidated ATG8s as well (Domanov et al., 2011). 

Targeting ATG3 to the rim permits ATG8s to reach both faces of the phagophore after conjugation 

(Fig. 2D). 

In contrast to these observations in vitro, yeast Atg3 has been found to be evenly distributed at the 

entire area of the phagophore in vivo (Ngu et al., 2015). This indicates that curvature sensing by 

ATG3 can be overruled by other factors such as the ATG12–ATG5-ATG16L1 complex, which is 

known to recruit ATG3 in vivo (Hanada et al., 2007). ATG16L1 also covers the surface of 

phagophores, but its localization is confined to the outer phagophore membrane (Mizushima et al., 

2003). The restriction of ATG16L1 to one face of the phagophore might be a consequence of the 

asymmetric distribution of PtdIns(3)P in human cells (Fig. 2C). PtdIns(3)P is enriched in the outer 

membrane and bound by WD repeat domain phosphoinositide-interacting protein 2 (WIPI2) 

(Cheng et al., 2014), which also physically interacts with ATG16L1 (Dooley et al., 2014). How 

the asymmetric distribution of PtdIns(3)P is achieved and maintained remains to be shown. 

Moreover, the functional consequence of the asymmetry is currently unclear since in yeast, 

PtdIns(3)P is enriched at the inner and not at the outer membrane (Cheng et al., 2014). 

The components and activity of the autophagy-specific conjugation system were revealed by 

landmark in vitro reconstitutions from the laboratory of Yoshinori Ōsumi, using purified proteins 

to recapitulate the enzymatic conjugation of Atg12 to Atg5 by Atg7 and Atg10 (Mizushima et al., 

1998). Subsequently, a second conjugation system was identified that targets Atg8 to membranes 

through its conjugation to PE (Kirisako et al., 2000). Using LUVs as model membranes, this 

conjugation could be recapitulated with purified Atg8, Atg7, and Atg3 (Ichimura et al., 2004) and 
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a functional connection of both conjugation reactions was revealed by the observation that Atg12–

Atg5 promotes lipidation of Atg8 in vivo. Furthermore, reconstitutions of Atg8-lipidation in the 

presence of Atg12–Atg5 showed that the latter functions as E3-ligase and promotes the transfer of 

Atg8 from its E2-like enzyme Atg3 to PE (Hanada et al., 2007). 

The observation that - at least in human cells - the ATG12–ATG5-ATG16L1 complex localizes at 

the outer membrane of the expanding phagophore raises the question why the E3-ligase complex 

is retained on the phagophore after conjugation of ATG8 took place. This was addressed by a 

reconstitution of the entire yeast conjugation machinery on model membranes (Kaufmann et al., 

2014). Atomic force microscopy of supported lipid bilayers (SLBs) (see Box 2) to which Atg8 was 

conjugated in the absence of Atg16 revealed that Atg8 associates together with the Atg12–Atg5 

conjugate into uniform particles composed of at least two subunits each. In the presence of Atg16, 

however, Atg8-Atg12–Atg5 became immobile and, instead of single particles, a continuous 12 nm 

thin membrane coat was detected on SLBs. The meshwork-like appearance of the coat was caused 

by the 16 nm long coiled-coil domain of Atg16 that spatially separated two Atg8-Atg12–Atg5 

complexes (Fig. 1C). An Atg16 mutant, which could not self-assemble into tail-to-tail dimers 

caused a remarkable autophagy defect:  cells that expressed this mutant produced large phagophore 

structures with unusual long persistence in the cytoplasm. Moreover, these phagophores did not 

transport autophagic cargo to the vacuole, implicating that the formed membrane structures 

correspond to immature and non-productive autophagosomes (Kaufmann et al., 2014). In vivo data 

from human cells supported this model by showing that deletion of all human ATG8 homologs 

led to a maturation and closure defect of autophagosomes, albeit autophagy progressed at a reduced 

level (Nguyen et al., 2016; Tsuboyama et al., 2016). 

Taken together, the combination of in vitro reconstitutions with in vivo experiments revealed that 

the Atg8 conjugation system is an important regulator of phagophore expansion, but not essential 

for autophagy. Which membranes promote expansion in response to different environmental 

conditions, how their transport is coordinated and how incoming membranes merge with the 

phagophore remain to be answered. 

 

Fusion or fission? – maturation and sealing of the phagophore 

Electron tomography of autophagic structures in human cells showed that the fully expanded 

phagophore adopts a spherical shape (Biazik et al., 2017). Sealing of the structure requires that the 
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membrane rims of the remaining spherical pore come into very close proximity to eventually 

merge. How this process is coordinated and which proteins promote sealing of the phagophore 

remained unknown. In principle, the process should be similar to the fusion of two small vesicles 

of high membrane curvature or to the scission of a membrane neck that projects away from the 

cytoplasm into the lumen of organelles or the extracellular space. Research over the past decades 

tried to clarify which of the two diametrically opposed mechanisms serve this purpose. 

Initial efforts focused on the fusion model in yeast and human cells. Many fusion reactions in cells 

are carried out by SNARE proteins, which merge membranes of vesicles with those of organelles 

or the plasma membrane. To overcome the high energy barrier for membrane fusion, SNAREs 

from two opposite membranes form a four-strand helical bundle that brings the opposite 

membranes in such close proximity that fusion takes place (Poirier et al., 1998). However, a recent 

study reported that although priming of SNARE proteins is required for maturation, they are not 

involved in the formation of autophagosomes (Abada et al., 2017; Reggiori et al., 2004). 

The lack of experimental evidence for a SNARE-mediated sealing mechanism has shifted the focus 

towards Atg proteins with potentially fusogenic properties. First indications for the involvement 

of yeast Atg8 in this process came from reconstitutions of the lipidation reaction on LUVs. 

Conjugation of Atg8 to LUVs resulted in massive clustering of the vesicles, which was 

macroscopically visible by an increase in the turbidity of the suspension (Nakatogawa et al., 2007). 

Further characterization of this process revealed that Atg8 molecules on opposite membranes 

interact with each other to promote tethering. Atg8-mediated fusion of theses membranes was, 

however, only observed if membranes with unphysiologically high levels of unsaturated 

phospholipids were used (Nair et al., 2011). This does not necessarily exclude the participation of 

Atg8 during phagophore closure since packaging defects of lipids lead to a destabilization of the 

membrane at the phagophore rim. However, additional experiments are needed to confirm the 

contribution of Atg8 in sealing of phagophores in vivo (Nair et al., 2011). Reconstitution reactions 

of human ATG8 homologs on model membranes revealed another potential mechanism by which 

ATG8 can promote fusion. The two ATG8 family members light chain 3B (LC3B) and gamma-

aminobutyric acid receptor-associated protein L2 (GABARAPL2) possess highly basic N-terminal 

helices that are required and sufficient to tether and fuse membranes in vitro by binding negative 

charges of opposing phospholipid bilayers (Weidberg et al., 2011). Since lipidation of ATG8 might 

be restricted to the phagophore rim (Nath et al., 2014), these ATG8 proteins would be positioned 
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at the right place to promote fusion (Fig. 2D). However, their small size would allow them to 

bridge only distances that are smaller than ~5 nm. Spontaneous membrane fusion occurs already 

if membranes are as close as 2 nm (Kozlovsky and Kozlov, 2003), suggesting that ATG8 proteins 

can only catalyze the very last step of sealing at which the remaining phagophore-pore is 

sufficiently constricted. Furthermore, other proteins such as Atg16 have been found to tether 

membranes in in vitro reconstituted systems. As for ATG8s, tethering of model membranes was 

based on interactions of positively charged amino acids with acidic phospholipids (Romanov et 

al., 2012). Further studies thus need to clarify how these different tethering events contribute to 

autophagosome formation. 

Recent progress in identifying biophysical principles of membrane scission reactions indicates that 

sealing of the autophagosome does not necessarily require fusion, but scission of membranes 

(Knorr et al., 2015; Renard et al., 2018). Although intuitively less obvious, the topology of the 

phagophore pore is very similar to that of a membrane neck in membrane abscission processes 

during multivesicular body biogenesis or viral budding. Both scission reactions are carried out by 

the endosomal sorting complex required for transport (ESCRT) complex III (Wenzel et al., 2018; 

Wollert et al., 2009). In vitro reconstitutions of this process on giant unilamellar vesicles (GUVs) 

(see Box 2) using purified ESCRT components demonstrated that the correct membrane topology 

is required and sufficient for cutting of the membrane by ESCRT-III (Wollert and Hurley, 2010). 

In vivo, ESCRT-III appears to cooperate with the AAA-ATPase VPS4 in order to sever not only 

membrane necks in multivesicular body biogenesis, but also during nuclear envelope assembly, 

midbody abscission during cell division, as well as for repair of damaged plasma or lysosomal 

membranes (Adell et al., 2017; Christ et al., 2017; Mierzwa et al., 2017). Owing to the diversity 

of cellular processes that rely on ESCRT-mediated membrane scission and that share a similar 

topology of the membrane neck that needs to be cut, a potential role of ESCRTs in autophagy was 

proposed. However, convincing experimental evidence was missing until a recent study reported 

that the ESCRT-III subunit charged multivesicular body protein 2A (CHMP2A) is required for 

sealing of the phagophore membrane (Takahashi et al., 2018). In related reactions, ESCRT-III 

cooperates with upstream factors to generate membrane necks that are narrow enough to be cleaved 

by ESCRT-III. This suggests that - as discussed for a potential ATG8-mediated fusion reaction - 

the phagophore rim needs to be sufficiently constricted to become a substrate for ESCRT-III. 

Whether phagophore expansion inherently leads to a sufficiently constricted pore remains a 
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challenging question. Furthermore, a collaboration of Atg8-mediated fusion and ESCRT-III 

mediated scission mechanisms remain a possibility. Innovative experiments using physiologically 

relevant templates such as cup-shaped membranes might be able to answer this question in the 

future. 

  

Born to die – fusion of autophagosomes with lysosomes 

The final step in autophagy requires the outer membrane of the autophagosome to fuse with the 

limiting membrane of the lysosome. Before this, autophagosomes need to be transported to 

lysosomes and both compartments need to be tethered to each other. Yeast autophagosomes form 

in immediate vicinity to the vacuole, allowing their completion to be coordinated with fusion 

independently of microtubule-based transport mechanisms (Kirisako et al., 1999). In human cells, 

however, autophagosomes are formed at various locations (Jahreiss et al., 2008) and therefore need 

to be transported to the perinuclear region where lysosomes are located (Korolchuk et al., 2011). 

This process depends on microtubules, the minus-end directed motor dynein, which mediates 

retrograde transport of cargo to lysosomes, but also the plus-end directed kinesin motor KIF5B, 

which is important for autophagosome positioning and fusion with lysosomes (Cardoso et al., 

2009; Kimura et al., 2008; Kochl et al., 2006). Advanced in vitro approaches were based on fusion 

of single dynein or kinesin motors to fluorescent beads and their incubation with microtubule-

coated coverslips (Svoboda and Block, 1994). Optical traps allowed movement of single motor 

proteins on microtubules to be recorded and forces in the pico-Newton range to be measured 

(Simmons, 1996): Dynein, which drives the anterograde transport of autophagosomes, moves with 

a speed of ~0.7 µm per sec and can exert a force up to 5 pN (King and Schroer, 2000; Toba et al., 

2006). Neurons are particularly well-suited to study transport processes in vivo. Most 

autophagosomes are produced at the distal axon of neurons and thus need to be transported to the 

soma, where lysosomes are located, over distances of 500–1000 µm (Maday and Holzbaur, 2014). 

Based on the measured velocity of dynein, it takes 12–24 min for an autophagosome to be 

transported from the distal axon to the soma. Compared to myosin-based transport on actin 

filaments, dynein-mediated trafficking is rather slow (Schott et al., 2002). 

Having reached perinuclear lysosomes, autophagosomes need to be recognized as fusion partners. 

This requires selective markers on their surface to provide identity and one such marker, the 
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SNARE protein Syntaxin17 (STX17), is recruited to autophagosomes after their completion 

(Itakura et al., 2012; Tsuboyama et al., 2016). 

The activity of SNARE proteins is tightly regulated; before fusion occurs, organelles need to be 

brought in close vicinity. This tethering is mediated by the lysosomal HOPS complex, which binds 

autophagosomes and lysosomes through its interaction with the small GTPases such as ADP-

ribosylation factor-like protein 8 (ARL8) and ras-related protein rab-2 (RAB2) in humans and 

Ypt7 (RAB7 homolog) in yeast (Reggiori and Ungermann, 2017). The molecular architecture of 

the yeast HOPS complex was revealed by single-particle electron microscopy (Bröcker et al., 

2012). The complex spans 30 nm, possesses Rab-binding sites (in Vsp41 and Vps39) on both ends 

and its headpiece contains the SNARE-interacting subunit Vps33. In vitro reconstitution 

experiments with LUVs revealed that the HOPS complex tethers membranes based on its 

interaction with Rab GTPases (Ho and Stroupe, 2015), but also through a curvature-dependent 

direct interaction with membrane vesicles (Ho and Stroupe, 2016). Moreover, the cooperation of 

HOPS, SNAREs, Ypt7 and the SNARE chaperones Sec17 and Sec18 is required to drive robust 

membrane fusion (Stroupe et al., 2009). The HOPS complex thus not only tethers autophagosomes 

to lysosomes, it also promotes SNARE-assembly (Fig. 3A). In autophagy, the HOPS complex 

promotes fusion by cooperating with STX17 (Jiang et al., 2014) as well as with the SNAREs 

synaptosomal-associated protein 29 (SNAP29) and vesicle-associated membrane protein 8 

(VAMP8) (Fig. 3A) (Itakura et al., 2012). Mechanistic details on how SNAREs drive membrane 

fusion have been revealed using SNARE-containing LUVs. Examples include the specificity of 

SNARE proteins (Paumet et al., 2004), the process of zippering into a four-strand helical bundle 

(Jakhanwal et al., 2017; Stein et al., 2009), as well as the process of membrane hemi-fusion and 

fusion (Hernandez et al., 2012). 

Even in the presence of tethering factors, the spontaneous assembly of SNAREs is inefficient and 

controlled by Sec1/Munc18-like (SM)-proteins (Gerber et al., 2008). Insights into the mechanism 

by which SM-proteins promote assembly of SNAREs came from in vitro reconstitutions and 

structural characterizations: the SM-protein Vps33 helps to assemble the t-SNARE motifs of 

SNAREs within the target membrane such that they are in register for interaction with the v-

SNARE within the vesicle membrane (Baker et al., 2015). A similar assisted assembly of SNAREs 

was found in autophagy. Unexpectedly, however, ATG14, the component of the PtdIns(3)-kinase 

complex that initiates autophagy, promotes this step (Fig. 3A). The structure of the SNARE-
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ATG14 complex revealed that the coiled-coil domain of ATG14 stabilizes the interaction of 

STX17 and SNAP29 to prime both SNAREs for zippering with the corresponding partner VAMP8 

(Baker et al., 2015). Consequently, reconstitutions on LUVs showed that SNARE-mediated 

membrane fusion was strongly enhanced in the presence of ATG14 (Diao et al., 2015). Taken 

together, ATG14 appears to have different functions in autophagy: As component of the PtdIns(3)-

kinase complex, it promotes induction of autophagy at the ER, whereas its function in 

autophagosome-lysosome fusion is independent of the other PtdIns(3)-kinase complex subunits 

(Fig. 3A). 

Before fusion of autophagosomes and lysosomes occurs, Atg/ATG proteins - including the 

cytoplasmic accessible pool of Atg8–PE or its human homologs - are released from the 

autophagosome. Recycling of Atg8 is achieved through proteolytic cleavage of the amide-bond 

between the C-terminal glycine of Atg8 and the amine function of PE by Atg4 (Kirisako et al., 

2000). The recruitment and activity of Atg4 needs to be tightly regulated to prevent premature 

cleavage of Atg8 (Abreu et al., 2017). This is achieved by Atg1/Ulk1-mediated phosphorylation 

of Atg4 or its human homologs at a conserved serine residue near its catalytic site (Pengo et al., 

2017; Sanchez-Wandelmer et al., 2017). The importance of this serine residue was confirmed by 

reconstituting the deconjugation reactions using SUVs with enzymatically conjugated Atg8 and 

incubating these with Atg4 or related serine mutants (Sanchez-Wandelmer et al., 2017). The 

observation that Atg1/ULK1 is present on phagophore membranes during their expansion and 

released shortly after autophagosome completion strongly imply that deconjugation of Atg8 

proteins and fusion of autophagosomes with lysosomes are interdependent and precisely regulated 

processes (Fig. 1D, E) (Cebollero et al., 2012; Yu et al., 2012). Spatiotemporal insights into Atg4-

mediated deconjugation were obtained using fluorescently labeled Atg8 conjugated to GUVs 

(Kaufmann et al., 2014). Atg4 efficiently recycles Atg8 from model membranes in vitro, even if 

Atg8 is engaged in a membrane scaffold with Atg12–Atg5-Atg16. Consequently, scaffold 

formation that was predicted to regulate phagophore expansion and recruitment of Atg4 by Atg8 

are mutually exclusive (Fig. 1D) (Kaufmann et al., 2014). 

The deconjugation of human ATG8 proteins is more complex, given that six ATG8 homologs are 

conjugated to autophagosomes and four ATG4 homologs are catalyzing priming and recycling 

reactions (Kabeya et al., 2004). The human ATG4B protein is the most potent isoform to prime 

human ATG8s and efficiently cuts LC3, GABARAP and GABARAP-L2 (Li et al., 2011; Sou et 
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al., 2006). Although the other ATG4 homologs are considerably slower in priming of human 

ATG8s, they possess similar catalytic activities as ATG4B in deconjugating ATG8s in vitro 

(Kauffman et al., 2018). The precise timing of the recycling reaction as well as the physiological 

functions of the individual ATG4 homologs in human cells remain to be characterized. 

Interestingly, depletion of Atg4 in yeast or ATG4 homologs in humans leads to the formation of 

considerably smaller autophagosomes and impact on the sealing of the phagophore (Fujita et al., 

2008; Hirata et al., 2017; Nair et al., 2012). This suggests that deconjugation of Atg8/ATG8 not 

only takes place shortly before, but also during phagophore-expansion and sealing. 

After autophagosomes and lysosomes have fused and autophagic cargo has been degraded, 

lysosomes need to be regenerated. The involved process has been termed autophagic lysosome 

reformation (ALR) and involves the formation of membrane extrusions from autolysosomes. 

Proto-lysosomes bud from theses tubes and their maturation restores the population of functional 

lysosomes (Chen and Yu, 2017). 

 

Insights into the inside – cargo selection in autophagy 

The fusion of the outer membrane of autophagosomes with lysosomes delivers autophagic cargo 

to the lysosomal lumen where it is degraded. Much attention has thus been devoted to reveal how 

specific cargo is selected and targeted to phagophores. This involves a family of conserved 

autophagy receptors, which bind cargo on the one hand and the phagophore on the other 

(Khaminets et al., 2016). Tethering of cargo to the phagophore depends on a LC3-interacting 

region (LIR), or Atg8-family interacting motif (AIM)-mediated interaction of autophagy receptors 

with Atg8 family proteins (Lamark et al., 2017) (Fig. 3B). The classical LIR motif is characterized 

by two bulky hydrophobic residues that are separated by two random residues and flanked by 

acidic amino acids. More recently, a number of motifs that distinguish between different ATG8 

family members have been identified, suggesting that binding of cargo receptors is more complex 

in higher eukaryotes (Muhlinen et al., 2012; Rogov et al., 2017; Stolz et al., 2017). The interaction 

of purified yeast and human Atg8 proteins with peptides that contain the various LIR(AIM) motifs 

has been investigated and the underlying structural, and to a certain extend regulatory principles, 

are well understood (Kim et al., 2016; Wild et al., 2013). Despite the important contributions of 

these in vitro binding studies, they have some limitations. The LIR motif of tectonin beta-propeller 

repeat-containing protein 2 (TECPR2), for example, binds all human ATG8 proteins with similar 
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affinity in vitro, but TECPR2 selectively interacts with LC3C in vivo (Stadel et al., 2015). 

Furthermore, increasing evidence suggests that lipidated and non-lipidated Atg8 proteins adapt 

distinct structural conformations which impact on their affinity to LIR motifs (Coyle et al., 2002; 

Ichimura et al., 2004; Kumeta et al., 2010; Nakatogawa et al., 2007), which should be 

systematically investigated in the future. 

Another interesting insight into selectivity of autophagy was that multiple Atg8-binding sites on 

Atg19 are critical for a tight tethering of the cargo ApeI to membranes in order to avoid uptake of 

other material (Sawa-Makarska et al., 2014). A related mechanism to achieve selective and 

exclusive uptake of distinct cargo was revealed by recapitulation of aggrephagy: the receptor p62 

oligomerizes upon binding to protein aggregates, which facilitates efficient tethering of such 

aggregates to LC3-conjugated membranes in vitro (Wurzer et al., 2015). However, cargo such as 

yeast ApeI does not only activate its corresponding cargo-receptor Atg19, it also appears to initiate 

lipidation of Atg8 by recruiting the E3-ligase complex (Fig. 3B). This couples receptor-mediated 

tethering of cargo to Atg8-conjugation, providing a possible mechanism to spatiotemporally 

coordinate cargo tethering with expansion of the isolation membrane in a selective and exclusive 

manner (Fracchiolla et al., 2016). 

Taken together, the combination of in vitro and in vivo studies greatly advanced our understanding 

of how cargo is tethered to membranes during selective autophagy. One of the most important 

questions that remain to be investigated concerns the two faces of autophagy – how can the cell 

transform a highly selective pathway that degrades defined cargo in an exclusive manner  into a 

non-selective pathway that degrades bulk cytoplasm? 

 

Conclusions and perspectives 

In vitro reconstitutions of biological processes have proven to be powerful tools to reveal 

unprecedented insights into fundamental mechanisms in biology. The combination of different 

model membranes such as vesicles and supported lipid bilayers (see Box 2) with structural, 

fluorescent-based, biophysical and biochemical methods (see Box 3) dissected molecular 

principles that govern autophagy induction, phagophore expansion and maturation, as well as 

fusion with lysosomes. The advantage of in vitro systems to provide a chemically well-defined 

environment is, however, at the same time its strongest limitation. Often, biophysical properties of 

isolated components in vitro simply cannot be correlated one-to-one with their functions in vivo. 
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This might reflect fundamental differences of artificial membranes, which are composed of pure 

phospholipids (see Box 2), and biological membranes which are much more complex in terms of 

their lipid composition. Biological membranes contain also a substantial amount of membrane 

proteins which strongly impact on physical properties, spatial organization and shape of theses 

membranes. Moreover, many experiments with reconstituted systems are ‘out of equilibrium’, 

relying on physical separation of components to analyze or quantify them independently (see Box 

3). Examples include a vast number of binding studies with liposomes and recombinant proteins. 

In vivo systems are, however, mostly in chemical equilibrium and fine-tuned by variations in 

expression levels of proteins or physical compartmentalization of membranes into microdomains. 

A successful strategy to overcome these limitations is a combinatorial approach in which in vitro 

experiments are complemented by in vivo approaches. Quite often, these combinations create 

positive feedback loops in which one method complements limitations of the other. The resulting 

synergy is well suited to tackle the most challenging remaining questions in autophagy in the 

future. Combined with new biophysical approaches, even more complicated aspects of autophagy 

can hopefully be reconstituted in vitro. The final goal in ‘reconstructing destruction’ remains to 

build an autophagosome from purified components in the test tube. 
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Box 1: Autophagy in human cells. 

In contrast to autophagy initiation in yeast that occurs at a single PAS (Cheong et al., 2008; Suzuki 

et al., 2001), many autophagosomes are formed simultaneously in human cells. Moreover, the 

endoplasmic reticulum (ER) has been shown to serve as a platform for nucleation of phagophores 

whereas the yeast PAS is in close proximity to the vacuole with the phagophore edges contacting 

the ER (Axe et al., 2008; Biazik et al., 2015; Hayashi-Nishino et al., 2009). The ER-domain at 

which autophagosomes are nucleated, termed omegasome, adopts a characteristic omega-like 

shape and is enriched in PtdIns(3)P (Hayashi-Nishino et al., 2009). Similar to yeast, the 

recruitment of the human ULK1-kinase complex (Atg1-kinase complex homolog) is the earliest 
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event in autophagy and requires ATG13 to be dephosphorylated (Hosokawa et al., 2009; Kim et 

al., 2011; Puente et al., 2016). After translocation to the ER, the ULK1 complex recruits the 

PtdIns(3)-kinase complex III (Park et al., 2016; Park et al., 2018), which consists of the enzyme 

VPS34 that converts PtdIns into PtdIns(3)P, VPS15, its autophagy specific subunit ATG14 and 

the adaptor protein Beclin 1. The enrichment of the omegasome in PtdIns(3)P leads to the 

recruitment of double FYVE-containing protein 1 (DFCP1) and the WD repeat domain 

phosphoinositide-interacting (WIPI) proteins (Proikas-Cezanne et al., 2004). WIPI1 is involved in 

the nucleation of the phagophore membrane at the omegasome (Axe et al., 2008; Proikas-Cezanne 

et al., 2015). The expansion of the phagophore is regulated by WIPI2, which recruits ATG16L1 to 

initiate the conjugation of ATG8 homologs to the phagophore (Dooley et al., 2014). Although the 

Ub-like conjugation system in yeast and humans is highly conserved, human cells express six 

ATG8 homologs with non-redundant functions (Weidberg et al., 2010). According to their 

sequence homology, two ATG8-subfamilies with the members light chain 3A (LC3A), LC3B and 

LC3C as well as gamma-aminobutyric acid receptor-associated protein (GABARAP), 

GABARAPL1 and GABARAPL2/ Golgi-associated ATPase enhancer of 16 kDa (GATE-16) can 

be distinguished (Schaaf et al., 2016). GABARAPs have been shown to play essential functions 

during both phagophore initiation and closure (Joachim et al., 2017; Wang et al., 2015; Weidberg 

et al., 2011). Deletion of LC3 homologs leads to the formation of smaller autophagosomes, 

suggesting that LC3s coordinate the expansion of autophagosomes (Nguyen et al., 2016; Weidberg 

et al., 2010), a process that also requires cooperation with the ATG9 compartment (Karanasios et 

al., 2016). Furthermore, all ATG8 homologs target specific cargo to the phagophore based on their 

interaction with a linear peptide motif, LC3-interacting region (LIR), that is present in most 

autophagy receptors (Rogov et al., 2014). After cargo has been confined by the expanded 

phagophore, the membrane is sealed giving rise to the double-membrane surrounded 

autophagosome that fuses with lysosomes (Itakura et al., 2012; Jiang et al., 2014). 

 

Box 2: Membrane model systems in synthetic biology. 

Model membranes are composed of synthetic phospholipids with defined compositions or lipid 

extracts with complex lipid-mixtures. A widely applied phospholipid-extract is derived from brain 

tissues based on the Folch extraction method (FOLCH et al., 1957). The lipids are, depending on 

their hydrophobicity, dissolved in chloroform or chloroform:methanole(:water) mixtures. 
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Liposomes of various sizes can be generated by producing a thin film of dried lipids on glass 

surfaces. Multilamellar vesicles of various sizes are spontaneously formed upon hydration of lipid 

films with buffer solutions. Unilamellar vesicles can be generated by sonication (small 

unilamellear vesicles, SUVs) or extrusion through filters with defined pore sizes (large unilamellar 

vesicles, LUVs) (Mui and Hope, 2009). Giant unilamellar vesicles (GUVs) can be formed by 

electroformation (Angelova and Dimitrov, 1986). SUVs and LUVs are widely used membrane 

structures to investigate protein-lipid interactions or to incorporate transmembrane proteins. GUVs 

are often used to investigate protein binding and protein mobility based on fluorescence 

microscopy using fluorescent-labeled, recombinant proteins (Wollert, 2012). The dynamics of 

proteins or lipids within membranes or at the surface of membranes can also be investigated using 

fluorescence correlation spectroscopic techniques (Ries and Schwille, 2008). In contrast to 

liposomes, which are ‘free-standing membranes’, supported lipid bilayers (SLBs) are formed on a 

solid support (for example glass or mica). SLBs are produced from SUVs that are spontaneously 

fusing upon contact with the surface of the support (Hardy et al., 2013). The advantage of SLBs is 

that high-resolution techniques such as atomic force microscopy or total internal reflection 

microscopy can be applied. However, the diffusion rates of lipids and membrane proteins are 

significantly lower in SLBs compared to free-standing membranes. 

 

Box 3: Experimental approaches involving artificial membranes. 

Vesicles are particularly useful to study protein-lipid interactions as well as interactions of 

membrane proteins with soluble factors. It is based on the physical separation of membrane 

vesicles from unbound proteins in order to quantify bound and unbound protein fractions. This can 

be achieved by sedimentation assays, in which both fractions are separated by ultracentrifugation, 

which sediments vesicles much faster than soluble proteins (Julkowska et al., 2013). The 

disadvantage of this approach is that protein aggregates co-sediment, leading to contamination of 

the vesicles fraction with unbound proteins. This problem can be circumvented by applying 

floatation assays, which are based on centrifugation of the sample in a density gradient. 

Membranes have a much lower density as proteins, allowing them to ‘float’ to the lightest top 

fraction of a density gradient. Bound proteins are co-floating together with membrane vesicles, 

whereas unbound proteins remain in the dense fraction and protein aggregates sediment. This 

allows all species to be separated (Busse et al., 2016). The drawback of the physical separation of 
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unbound and bound fractions is the perturbation of the biophysical equilibrium and the dissociation 

of weak interactions. In order to study protein-lipid interactions under equilibrated conditions, 

fluorescence-based methods can be applied. One such method utilizes GUVs with diameters of 10 

to 100 µm and the incorporation of fluorescent lipids. In combination with fluorescent-labeled 

proteins, binding can be observed in real time by imaging GUVs upon addition of proteins (Sezgin 

and Schwille, 2012). Moreover, fluorescent recovery after photobleaching of the membrane-bound 

protein fraction reveals insights into the mobility of proteins on the membrane as well as dynamics 

of the exchange of bound and unbound proteins (Rayan et al., 2010). Fluorescence correlation and 

cross-correlation spectroscopy can be used to determine the two-dimensional diffusion coefficients 

of membrane bound proteins and fluorescent lipids independently from each other (Bacia et al., 

2014). The interaction of fluorescent proteins with membranes can be studied at a single-molecule 

level by combining reconstitutions on supported lipid bilayers with total internal reflection 

microscopy (Kiessling et al., 2017). Furthermore, new, ultrafast atomic force microscopes allow 

assembly of macromolecular machines as well as their dynamics to be structurally characterized 

with unmatched spatial resolution of height profiles in real time (Chiaruttini et al., 2015). Electron 

microscopy, electron tomography and subtomogram averaging are, in turn, powerful methods to 

reveal static high-resolution structures of proteins on membranes. Structural characterization of 

large membrane proteins by EM is achieved through nano-discs, which are lipid bilayer islands 

that are surrounded by amphipathic proteins such as apolioprotein A1 (Thonghin et al., 2018). 

 

Figure legends 

Fig. 1: Schematic representation of autophagy in yeast. 

(A) The nucleation of phagophores occurs at the phagophore assembly site and requires activation 

and assembly of the Atg1-kinase complex as well as recruitment and tethering of Atg9 vesicles. 

(B) The phosphatidylinositol(3)-kinase (PI3K) complex generates PtdIns(3)P at the early 

phagophore, which is required to recruit the Atg8 conjugation machinery (shown here: E2-enzyme 

Atg3). Before Atg8 is conjugated to the phagophore, its C-terminus is cleaved by Atg4 (priming). 

(C) The concave (inner membrane) pool of Atg8 tethers cargo to the phagophore, whereas the 

convex pool forms, together with Atg12–Atg5-Atg16, a two-dimensional protein network that 

stabilizes the membrane. Expansion of the phagophore requires incorporation of membranes, 
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probably by fusion of vesicles of different origins with the rim of the phagophore. (D) Sealing of 

the phagophore gives rise to the double-membrane surrounded autophagosome. The kinase activity 

of Atg1 promotes release of most Atg proteins on the cytoplasmic face of autophagosomes into 

the cytoplasm. Recycling of Atg8 requires proteolytic activity of Atg4. (E) The fusion of 

autophagosomes with the yeast vacuole is coordinated by the HOPS complex, which tethers both 

compartments to each other, and by SNARE proteins. Zippering of the lysosomal SNARE with 

autophagic SNAREs drive membrane fusion. Proteolytic enzymes within the lysosome degrade 

the inner autophagosome membrane, cargo and Atg proteins (e.g. Atg8). 

 

Fig. 2: Expansion of autophagosomes requires spatiotemporal coordination of many 

processes. 

(A) The human WIPI2 protein binds PtdIns(3)P at the outer face of the phagophore and recruits 

the ATG12–ATG5-ATG16L1 complex, which facilitates the transfer of ATG8 proteins from 

ATG3 to phosphatidylethanolamine of the phagophore membrane. (B) The yeast Atg1-kinase 

complex strictly localizes to the phagophore rim, whereas Atg1 is also recruited to the phagophore 

membrane (by binding Atg8). The Atg1-kinase complex might be involved in coordinating fusion 

of vesicles with the phagophore rim. Expansion of the membrane requires transport of membranes 

from different sources by vesicular carriers such as Atg9 or COPII vesicles. (C) The amphipathic 

helix of ATG14 targets the human phosphatidylinositol(3)-kinase (PI3K) complex to the 

phagophore rim where it converts PtdIns (PI) into PtdIns(3)-phosphate (PI3P). It is unknown how 

the asymmetric distribution of PI3P, which is only found in the outer membrane of the phagophore, 

is achieved and maintained. (D) Human ATG3 possesses an ALPS motif which might target a 

subpopulation of ATG3 to the phagophore rim. This localization allows ATG8 to reach the convex 

(outer) and concave (inner) face of the phagophore after conjugation. Insertion of the ALPS motif 

of ATG3 or the amphipathic helix of ATG14 into the membrane is facilitated by lipid packaging 

defects that are caused by strong bending of the membrane at the rim of phagophores. 

 

Fig. 3: Autophagosome-lysosome fusion and cargo capture by Atg8. 

(A) Fusion of autophagosomes and lysosomes is driven by the membrane-tethering HOPS 

complex and SNAREs. RAB7 is a small GTPase that is recruited to autophagosomes and 

lysosomes. Direct or RAB effector-mediated interactions with RAB7 allow the HOPS complex to 
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bind and tether both membranes. The two cytoplasmic SNAREs, Syntaxin 17 (STX17) and 

SNAP29, are recruited to the phagophore after phagophore completion. ATG14 facilitates 

assembly and priming of the autophagic SNAREs. The HOPS complex promotes zippering of 

lysosomal and autophagic SNAREs into a four-strand helical bundle that drives membrane fusion. 

(B) The multiple functions of Atg8 on phagophores. The concave pool of Atg8 binds autophagy 

receptors to capture cargo. Depicted here is the interaction of the Ape1 complex (a cargo in the 

yeast cytoplasm-to-vacuole targeting pathway) with its receptor Atg19 and Atg8. Atg19 binds 

Atg16 in vitro, which might promote recruitment of the Atg12–Atg5-Atg16 complex to the 

phagophore and position it close to the phagophore rim, where it could stabilize Atg3. The 

amphipathic helix of Atg3 contributes to the rim localization of Atg3. As a result, conjugation of 

Atg8 to lipids at the rim of the phagophore is promoted, which would allow Atg8 to reach the inner 

(concave) and outer (convex) face of the phagophore. At the convex membrane, a scaffold 

composed of the Atg12–Atg5-Atg16 complex and Atg8 might promote and guide phagophore 

expansion. 
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