V. Aimanianda, J. Bayry, S. Bozza, O. Kniemeyer, K. Perruccio et al., Surface hydrophobin prevents immune recognition of airborne fungal spores, Nature, vol.460, pp.1117-1121, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01500616

A. Armenante, S. Longobardi, I. Rea, L. De-stefano, M. Giocondo et al., The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans, Glycobiology, vol.20, pp.594-602, 2010.

M. Artini, P. Cicatiello, A. Ricciardelli, R. Papa, L. Selan et al., The Cell Surface, vol.5, p.100023, 2019.

G. Vrenna, M. L. Tutino, P. Giardina, and E. Parrilli, Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces, Biofouling, vol.33, pp.601-611, 2017.

J. Bayry, A. Beaussart, Y. F. Dufrêne, M. Sharma, K. Bansal et al., Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response, Infect. Immun, vol.82, pp.3141-3153, 2014.

A. Beauvais, M. Monod, J. P. Debeaupuis, M. Diaquin, H. Kobayashi et al., Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus, J. Biol. Chem, vol.272, pp.6238-6244, 1997.

A. Beauvais, S. Bozza, O. Kniemeyer, . Formosa, . Cécile et al., Deletion of the ?-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus, PLoS Pathog, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01450713

A. T. Brunger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Crystallography & NMR system: a new software suite for macromolecular structure determination, Acta Crystallogr. Biol. Crystallogr, vol.54, pp.905-921, 1998.

S. Bruns, O. Kniemeyer, M. Hasenberg, V. Aimanianda, S. Nietzsche et al., Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA, PLoS Pathog, vol.6, 2010.

P. Butko, J. P. Buford, J. S. Goodwin, P. A. Stroud, C. L. Mccormick et al., Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3, Biochem. Biophys. Res. Commun, vol.280, pp.212-215, 2001.

S. Carrion, J. De, S. M. Leal, M. A. Ghannoum, V. Aimanianda et al., The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1-and dectin-2-dependent responses and enhances fungal survival in vivo, J. Immunol. Baltim. Md, vol.1950, pp.2581-2588, 0191.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. Biol. Crystallogr, vol.66, pp.12-21, 2010.

P. Cicatiello, P. Dardano, M. Pirozzi, A. M. Gravagnuolo, L. De-stefano et al., Self-assembly of two hydrophobins from marine fungi affected by interaction with surfaces, Biotechnol. Bioeng, vol.114, pp.2173-2186, 2017.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

M. E. Da-silva-ferreira, M. R. Kress, M. Savoldi, M. H. Goldman, A. Härtl et al., The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus, Eukaryot. Cell, vol.5, pp.207-211, 2006.

T. R. Dagenais, S. S. Giles, V. Aimanianda, J. Latgé, C. M. Hull et al., Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer, Infect. Immun, vol.78, pp.980-989, 2010.

E. Dague, D. Alsteens, J. Latgé, C. Verbelen, D. Raze et al., Chemical force microscopy of single live cells, Nano Lett, vol.7, pp.3026-3030, 2007.

E. Dague, D. Alsteens, J. Latgé, and Y. F. Dufrêne, High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia, Biophys. J, vol.94, pp.656-660, 2008.

E. Dague, A. Delcorte, J. Latgé, and Y. F. Dufrêne, Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis, Langmuir ACS J. Surf. Colloids, vol.24, pp.2955-2959, 2008.

M. L. De-vocht, I. Reviakine, H. A. Wösten, A. Brisson, J. G. Wessels et al., Structural and functional role of the disulfide bridges in the hydrophobin SC3, J. Biol. Chem, vol.275, pp.28428-28432, 2000.

J. Gandier, D. N. Langelaan, A. Won, K. O'donnell, J. L. Grondin et al., Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision, Sci. Rep, vol.7, 2017.

A. Gastebois, V. Aimanianda, S. Bachellier-bassi, A. Nesseir, A. Firon et al., SUN proteins belong to a novel family of ?-(1,3)-glucan-modifying enzymes involved in fungal morphogenesis, J. Biol. Chem, vol.288, pp.13387-13396, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01522918

M. F. Gebbink, D. Claessen, B. Bouma, L. Dijkhuizen, and H. A. Wösten, Amyloids -a functional coat for microorganisms, Nat. Rev. Microbiol, vol.3, pp.333-341, 2005.

A. Grünbacher, T. Throm, C. Seidel, B. Gutt, J. Röhrig et al., Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface, PloS One, vol.9, 2014.

A. Halle, V. Hornung, G. C. Petzold, C. R. Stewart, B. G. Monks et al., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta, Nat. Immunol, vol.9, pp.857-865, 2008.

T. Hartmann, M. Dümig, B. M. Jaber, E. Szewczyk, P. Olbermann et al., Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the beta-rec/six site-specific recombination system, Appl. Environ. Microbiol, vol.76, pp.6313-6317, 2010.

R. W. Hooft, G. Vriend, C. Sander, and E. E. Abola, Errors in protein structures, Nature, vol.381, p.272, 1996.

K. Jaton-ogay, S. Paris, M. Huerre, M. Quadroni, R. Falchetto et al., Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus, Mol. Microbiol, vol.14, pp.917-928, 1994.

B. G. Jensen, M. R. Andersen, M. H. Pedersen, J. C. Frisvad, and I. Søndergaard, Hydrophobins from Aspergillus species cannot be clearly divided into two classes, BMC Res. Notes, vol.3, 2010.

L. E. Kay, G. Xu, A. U. Singer, D. R. Muhandiram, and J. D. Forman-kay, A gradientenhanced HCCH-TOCSY experiment for recording side-chain of proteins, J. Magn. Reson. Ser. B, vol.101, pp.333-337, 1993.

M. J. Kershaw and N. J. Talbot, Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis, Fungal Genet. Biol. FG B, vol.23, pp.18-33, 1998.

M. J. Kershaw, G. Wakley, and N. J. Talbot, Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins, EMBO J, vol.17, pp.3838-3849, 1998.

M. J. Kershaw, C. R. Thornton, G. E. Wakley, and N. J. Talbot, Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis, Mol. Microbiol, vol.56, pp.117-125, 2005.

A. H. Kwan, R. D. Winefield, M. Sunde, J. M. Matthews, R. G. Haverkamp et al., Structural basis for rodlet assembly in fungal hydrophobins, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.3621-3626, 2006.

K. Lambou, C. Lamarre, R. Beau, N. Dufour, and J. Latge, Functional analysis of the superoxide dismutase family in Aspergillus fumigatus, Mol. Microbiol, vol.75, pp.910-923, 2010.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr, vol.26, pp.283-291, 1993.

J. P. Latgé, Aspergillus fumigatus and aspergillosis, Clin. Microbiol. Rev, vol.12, pp.310-350, 1999.

J. Latgé, A. Beauvais, and G. Chamilos, The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence, 2017.

, Annu. Rev. Microbiol, vol.71, pp.99-116

K. A. Littlejohn, P. Hooley, and P. W. Cox, Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties. Food Hydrocoll, vol.27, pp.503-516, 2012.

S. Longobardi, D. Picone, C. Ercole, R. Spadaccini, L. De-stefano et al., Environmental conditions modulate the switch among different states of the hydrophobin Vmh2 from Pleurotus ostreatus, Biomacromolecules, vol.13, pp.743-750, 2012.

I. Macindoe, A. H. Kwan, Q. Ren, V. K. Morris, W. Yang et al., Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.804-811, 2012.

J. P. Mackay, J. M. Matthews, R. D. Winefield, L. G. Mackay, R. G. Haverkamp et al., The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures, Struct. Lond. Engl, vol.1993, issue.9, pp.83-91, 2001.

P. Melin, J. Schnürer, and E. G. Wagner, Characterization of phiA, a gene essential for phialide development in Aspergillus nidulans, Fungal Genet. Biol. FG B, vol.40, pp.234-241, 2003.

M. Monod, S. Capoccia, B. Léchenne, C. Zaugg, M. Holdom et al., Secreted proteases from pathogenic fungi, Int. J. Med. Microbiol. IJMM, vol.292, pp.405-419, 2002.

V. K. Morris, Q. Ren, I. Macindoe, A. H. Kwan, N. Byrne et al., Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation, J. Biol. Chem, vol.286, pp.15955-15963, 2011.

V. K. Morris, R. Linser, K. L. Wilde, A. P. Duff, M. Sunde et al., Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered ?-sheet core amidst structural heterogeneity, Angew. Chem. Int. Ed. Engl, vol.51, pp.12621-12625, 2012.

D. R. Muhandiram and L. E. Kay, Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity, J. Magn. Reson. Ser. B, vol.103, pp.203-216, 1994.

B. Niu, B. Li, H. Wang, R. Guo, H. Xu et al., Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin, Colloids Surf. B Biointerfaces, vol.150, pp.344-351, 2017.

S. Paris, J. Debeaupuis, R. Crameri, M. Carey, F. Charlès et al., Conidial hydrophobins of Aspergillus fumigatus, Appl. Environ. Microbiol, vol.69, pp.1581-1588, 2003.

I. Valsecchi, The Cell Surface, vol.5, p.100023, 2019.

M. H. Pedersen, I. Borodina, J. L. Moresco, W. E. Svendsen, J. C. Frisvad et al., High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris, Appl. Microbiol. Biotechnol, vol.90, pp.1923-1932, 2011.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, vol.8, pp.785-786, 2011.

C. L. Pham, A. Rey, V. Lo, M. Soulès, Q. Ren et al., Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism, Sci. Rep, vol.6, 2016.

C. L. Pham, B. Rodriguez-de-francisco, I. Valsecchi, R. Dazzoni, A. Pillé et al., Probing structural changes during self-assembly of surface-active hydrophobin proteins that form functional amyloids in fungi, J. Mol. Biol, vol.430, pp.3784-3801, 2018.

A. Pille, A. H. Kwan, I. Cheung, M. Hampsey, V. Aimanianda et al., )H, (13)C and (15)N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus, Biomol. NMR Assign, vol.9, issue.1, pp.113-118, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01673651

A. Piscitelli, P. Cicatiello, A. M. Gravagnuolo, I. Sorrentino, C. Pezzella et al., Applications of functional amyloids from fungi: surface modification by class I hydrophobins, 2017.

U. Reichard, M. Monod, F. Odds, and R. Rüchel, Virulence of an aspergillopepsindeficient mutant of Aspergillus fumigatus and evidence for another aspartic proteinase linked to the fungal cell wall, J. Med. Vet. Mycol. Bi-Mon. Publ. Int. Soc. Hum. Anim. Mycol, vol.35, pp.189-196, 1997.

Q. Ren, A. H. Kwan, and M. Sunde, Two forms and two faces, multiple states and multiple uses: Properties and applications of the self-assembling fungal hydrophobins, Biopolymers, vol.100, pp.601-612, 2013.

D. Ribitsch, E. Herrero-acero, A. Przylucka, S. Zitzenbacher, A. Marold et al., Enhanced cutinasecatalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins, Appl. Environ. Microbiol, vol.81, pp.4111-4125, 2015.

W. Rieping, M. Habeck, B. Bardiaux, A. Bernard, T. E. Malliavin et al., ARIA2: automated NOE assignment and data integration in NMR structure calculation, Bioinformatics, vol.23, pp.381-382, 2007.

J. Sarfati, M. Monod, P. Recco, A. Sulahian, C. Pinel et al., Recombinant antigens as diagnostic markers for aspergillosis, Diagn. Microbiol. Infect. Dis, vol.55, pp.279-291, 2006.

K. Scholtmeijer, M. L. De-vocht, R. Rink, G. T. Robillard, and H. A. Wösten, Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides, J. Biol. Chem, vol.284, pp.26309-26314, 2009.

B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt et al., Global quantification of mammalian gene expression control, Nature, vol.473, pp.337-342, 2011.

D. Sharma and K. Rajarathnam, 13C NMR chemical shifts can predict disulfide bond formation, J. Biomol. NMR, vol.18, pp.165-171, 2000.

Y. Shen, F. Delaglio, G. Cornilescu, and A. Bax, TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts, J. Biomol. NMR, vol.44, pp.213-223, 2009.

M. J. Sippl, Recognition of errors in three-dimensional structures of proteins, Proteins, vol.17, pp.355-362, 1993.

D. Sriranganadane, P. Waridel, K. Salamin, U. Reichard, E. Grouzmann et al., Aspergillus protein degradation pathways with different secreted protease sets at neutral and acidic pH, J. Proteome Res, vol.9, pp.3511-3519, 2010.

M. Sunde, A. H. Kwan, M. D. Templeton, R. E. Beever, and J. P. Mackay, Structural analysis of hydrophobins, Micron Oxf. Engl, issue.39, pp.773-784, 1993.

T. Takahashi, H. Maeda, S. Yoneda, S. Ohtaki, Y. Yamagata et al., The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces, Mol. Microbiol, vol.57, pp.1780-1796, 2005.

N. J. Talbot, D. J. Ebbole, and J. E. Hamer, Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea, Plant Cell, vol.5, pp.1575-1590, 1993.

N. J. Talbot, M. J. Kershaw, G. E. Wakley, O. M. De-vries, J. G. Wessels et al., MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea, Plant Cell, vol.8, pp.985-999, 1996.

T. Tanaka, M. Nakayama, T. Takahashi, K. Nanatani, Y. Yamagata et al., Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system, Appl. Microbiol. Biotechnol, vol.101, pp.2343-2356, 2017.

N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin et al., rodletless mutants of Aspergillus fumigatus, Infect. Immun, vol.62, pp.4380-4388, 1994.

A. C. Tsolis, N. C. Papandreou, V. A. Iconomidou, and S. J. Hamodrakas, A consensus method for the prediction of "aggregation-prone" peptides in globular proteins, PloS One, vol.8, 2013.

C. Tükel, R. P. Wilson, J. H. Nishimori, M. Pezeshki, B. A. Chromy et al., Responses to amyloids of microbial and host origin are mediated through toll-like receptor 2, Cell Host Microbe, vol.6, pp.45-53, 2009.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc, vol.11, pp.2301-2319, 2016.

I. Valsecchi, V. Dupres, E. Stephen-victor, J. I. Guijarro, J. Gibbons et al., Role of hydrophobins in Aspergillus fumigatus, J. Fungi Basel Switz, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01673574

X. Wang, H. P. Permentier, R. Rink, J. A. Kruijtzer, R. M. Liskamp et al., Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry, Biophys. J, vol.87, pp.1919-1928, 2004.

J. G. Wessels, Developmental regulation of fungal cell wall formation, Annu. Rev. Phytopathol, vol.32, pp.413-437, 1994.

J. R. Whiteford and P. D. Spanu, Hydrophobins and the interactions between fungi and plants, Mol. Plant Pathol, vol.3, pp.391-400, 2002.

H. A. Wosten, O. M. De-vries, and J. G. Wessels, Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer, Plant Cell, vol.5, pp.1567-1574, 1993.

H. A. Wösten and K. Scholtmeijer, Applications of hydrophobins: current state and perspectives, Appl. Microbiol. Biotechnol, vol.99, pp.1587-1597, 2015.

S. Zhang, Y. X. Xia, B. Kim, and N. O. Keyhani, Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana, Mol. Microbiol, vol.80, pp.811-826, 2011.

Z. Zhao, H. Wang, X. Qin, X. Wang, M. Qiao et al., Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing, Colloids Surf. B Biointerfaces, vol.71, pp.102-106, 2009.

A. Zykwinska, T. Guillemette, J. Bouchara, and S. Cuenot, Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution, Biochim. Biophys. Acta, vol.1844, pp.1231-1237, 2014.

A. Zykwinska, M. Pihet, S. Radji, J. Bouchara, and S. Cuenot, Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus, Biochim. Biophys. Acta, vol.1844, pp.1137-1144, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01615977

I. Valsecchi, The Cell Surface, vol.5, p.100023, 2019.