+. Cd56-+-vs, V?24J?18 + dot plot defined the iNKT cells. (B) Comparative analysis of iNKT cells among the TB/HIV (n = 33), HIV (n = 25), TB (n = 27), and HC (n = 25) groups, before any therapeutic intervention, based on the CD3 + CD56 + V?24J?18 + or CD3 + V?24J?18 + populations. REFERENCES 1. WHO. Global Tuberculosis Report, vol.69, 2018.

, Available online at, WHO Fact Sheets on TB, vol.16, 2018.

, Available online at, Boletim, 2008.

B. Epidemiológico, M. Secretaria-de-vigilância-em-saúde, . Da-saúde, T. Coinfecção, and . Brasil, Panorama Epidemiológico E Atividades Colaborativas, 2017.

K. Cohen and G. Meintjes, Management of individuals requiring antiretroviral therapy and TB treatment, Curr Opin HIV AIDS, vol.5, pp.61-70, 2010.

S. Ravimohan, N. Tamuhla, A. P. Steenhoff, R. Letlhogile, K. Nfanyana et al., Immunological profiling of tuberculosis-associated immune reconstitution inflammatory syndrome and non-immune reconstitution inflammatory syndrome death in HIV-infected adults with pulmonary tuberculosis starting antiretroviral therapy: a prospective obse, Lancet Infect Dis, vol.15, pp.429-467, 2015.

W. Worodria, J. Menten, M. Massinga-loembe, D. Mazakpwe, D. Bagenda et al., TB-IRIS Study Group. Clinical spectrum, risk factors and outcome of immune reconstitution inflammatory syndrome in patients with tuberculosis-HIV coinfection, Antivir Ther, vol.17, pp.841-849, 2012.

R. P. Lai, J. K. Nakiwala, G. Meintjes, and R. J. Wilkinson, The Immunopathogenesis of the HIV tuberculosis immune reconstitution inflammatory syndrome, Eur J Immunol, vol.43, pp.1995-2002, 2013.

A. F. Luetkemeyer, M. A. Kendall, M. Nyirenda, X. Wu, P. Ive et al., Tuberculosis immune reconstitution inflammatory syndrome in A5221 STRIDE: timing, severity, and implications for HIV-TB programs, J Acquir Immune Defic Syndr, vol.65, pp.423-431, 2014.

N. F. Walker, J. Scriven, G. Meintjes, and R. J. Wilkinson, Immune reconstitution inflammatory syndrome in HIV-infected patients, HIV/AIDS, vol.7, pp.49-64, 2015.

N. F. Walker, C. Stek, S. Wasserman, R. J. Wilkinson, and G. Meintjes, The tuberculosisassociated immune reconstitution inflammatory syndrome: recent advances in clinical and pathogenesis research, Curr Opin HIV AIDS, vol.13, pp.512-533, 2018.

M. Ruhwald and P. Ravn, Immune reconstitution syndrome in tuberculosis and HIV-co-infected patients: Th1 explosion or cytokine storm? AIDS, vol.21, pp.882-886, 2007.

A. Conesa-botella, G. Meintjes, A. K. Coussens, H. Van-der-plas, R. Goliath et al., Corticosteroid therapy, vitamin D status, and inflammatory cytokine profile in the HIV-tuberculosis immune reconstitution inflammatory syndrome, Clin Infect Dis, vol.55, pp.1004-1015, 2012.

D. L. Barber, B. B. Andrade, C. Mcberry, I. Sereti, and A. Sher, Role of IL-6 in Mycobacterium avium-associated immune reconstitution inflammatory syndrome, J Immunol, vol.192, pp.676-82, 2013.

A. Bourgarit, G. Carcelain, V. Martinez, C. Lascoux, V. Delcey et al., Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients, AIDS, vol.20, pp.1-7, 2006.

A. Bourgarit, G. Carcelain, A. Samri, C. Parizot, M. Lafaurie et al., Tuberculosis-associated immune restoration syndrome in HIV-1-infected patients involves tuberculin-specific CD4 Th1 cells and KIR-negative T cells, J Immunol, vol.183, pp.3915-3938, 2009.

G. Meintjes, K. A. Wilkinson, M. X. Rangaka, K. Skolimowska, K. Van-veen et al., Type 1 helper T cells and FoxP3-positive T cells in HIVtuberculosis-associated immune reconstitution inflammatory syndrome, Am J Respir Crit Care Med, vol.178, pp.1083-1092, 2008.

T. P. Silva, C. Giacoia-gripp, C. A. Schmaltz, F. M. Sant'anna, M. H. Saad et al., Risk factors for increased immune reconstitution in response to Mycobacterium tuberculosis antigens in tuberculosis HIVinfected, antiretroviral-naïve patients, BMC Infect Dis, vol.17, p.606, 2017.

F. Conradie, A. S. Foulkes, P. Ive, X. Yin, K. Roussos et al., Natural killer cell activation distinguishes Mycobacterium tuberculosismediated immune reconstitution syndrome from chronic HIV and HIV/MTB coinfection, J Acquir Immune Defic Syndr, vol.58, pp.309-327, 2011.

P. Pean, E. Nerrienet, Y. Madec, L. Borand, D. Laureillard et al., Natural killer cell degranulation capacity predicts early onset of the immune reconstitution inflammatory syndrome (IRIS) in HIV-infected patients with tuberculosis, Blood, vol.119, pp.3315-3335, 2012.

B. B. Andrade, A. Singh, G. Narendran, M. E. Schechter, K. Nayak et al., Mycobacterial antigen driven activation of CD14++CD16-monocytes is a predictor of tuberculosis-associated immune reconstitution inflammatory syndrome, PLoS Pathog, vol.10, p.1004433, 2014.

R. Lai, G. Meintjes, K. A. Wilkinson, C. M. Graham, S. Marais et al., HIV-Tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by toll-like receptor and inflammasome signalling, Nat Commun, vol.6, p.8451, 2015.

H. Y. Tan, Y. K. Yong, B. B. Andrade, E. Shankar, S. Ponnampalavanar et al., Plasma interleukin-18 levels are a biomarker of innate immune responses that predict and characterize tuberculosis-associated immune reconstitution inflammatory syndrome, AIDS, vol.29, pp.421-452, 2015.

H. Y. Tan, Y. K. Yong, E. M. Shankar, G. Paukovics, R. Ellegård et al., aberrant inflammasome activation characterizes tuberculosisassociated immune reconstitution inflammatory syndrome, J Immunol, vol.196, pp.4052-63, 2016.

J. K. Nakiwala, N. F. Walker, C. R. Diedrich, W. Worodria, G. Meintjes et al., Neutrophil activation and enhanced release of granule products in HIV-TB immune reconstitution inflammatory syndrome, J Acquir Immune Defic Syndr, vol.77, pp.221-230, 2018.

M. C. Raviglione, J. P. Narain, and A. Kochi, HIV-associated tuberculosis in developing countries: clinical features, diagnosis, and treatment, Bull World Health Organ, vol.70, pp.515-541, 1992.

T. P. Silva, C. Giacoia-gripp, C. A. Schmaltz, F. M. Sant'-anna, V. Rolla et al., T cell activation and cytokine profile of tuberculosis and HIV-positive individuals during antituberculous treatment and efavirenzbased regimens, PLoS ONE, vol.8, 2013.

, Available online at, Tuberculosis Fact Sheet, 2015.

N. Krishnan, B. D. Robertson, and G. Thwaites, The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis, Tuberculosis, vol.90, pp.361-367, 2010.

I. L. Leeds, M. J. Magee, E. V. Kurbatova, C. Rio, H. M. Blumberg et al., Site of extrapulmonary tuberculosis is associated with HIV infection, Clin Infect Dis, vol.55, pp.75-81, 2012.

H. B. Ayed, M. Koubaa, C. Marrakchi, K. Rekik, F. Hammami et al., Extrapulmonary tuberculosis: update on the epidemiology, risk factors and prevention strategies, Int J Trop Dis, vol.1, p.6, 2018.

O. J. Cantres-fonseca, W. Rodriguez-cintrón, F. D. Olmo-arroyo, and S. Baez-corujo, Extra Pulmonary Tuberculosis: An Overview, Role of Microbes in Human Health and Diseases, Nar Singh Chauhan. IntechOpen, 2018.

D. Yang and Y. Kong, The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis, Front Biol, vol.10, pp.252-61, 2015.

S. Ministério-da, Protocolo Clínico E Diretrizes Terapêuticas Para O Manejo Da Infecção Pelo HIV Em Adultos, 2018.

S. Ministério-da, Comitê Técnico Assessor do Programa Nacional de Controle da Tuberculos. Manual de Recomendações para o Controle da Tuberculose no Brasil. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica, 284p. Available online at, 2011.

F. O. Demitto, C. Schmaltz, F. M. Sant'anna, M. B. Arriaga, B. B. Andrade et al., Predictors of early mortality and effectiveness of antiretroviral therapy in TB-HIV patients from Brazil, PLoS ONE, vol.14, 2019.

J. Robertson, M. Meier, J. Wall, J. Ying, and C. J. Fichtenbaum, Immune reconstitution syndrome in HIV: validating a case definition and identifying clinical predictors in persons initiating antiretroviral therapy, Clin Infect Dis, vol.42, pp.1639-1685, 2006.

G. Meintjes, S. D. Lawn, F. Scano, G. Maartens, M. A. French et al., Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings, Lancet Infect Dis, vol.8, pp.516-539, 2008.

C. J. Montoya, D. Pollard, J. Martinson, K. Kumari, C. Wasserfall et al., Characterization of human invariant natural killer t subsets in health and disease using a novel invariant natural killer T cellclonotypic monoclonal antibody, 6B11. Immunology, vol.122, pp.1-14, 2007.

M. A. Exley, R. Hou, A. Shaulov, E. Tonti, P. Dellabona et al., Selective activation, expansion, and monitoring of human iNKT cells with a monoclonal antibody specific for the TCR alpha-chain CDR3 loop, Eur J Immunol, vol.38, pp.1756-66, 2008.

M. Lenart, A. Gruca, A. Mueck, M. Rutkowska-zapa?a, M. Surman et al., Comparison of 6B11 mAb and ?-GalCer-loaded CD1d dextramers for detection of iNKT cells by flow cytometry, J Immunol Methods, vol.446, pp.1-6, 2017.

G. Alter, J. M. Malenfant, and M. Altfeld, CD107a as a functional marker for the identification of natural killer cell activity, J Immunol Methods, vol.294, pp.15-22, 2004.

A. N. Spiess, C. Feig, and C. Ritz, Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry, BMC Bioinformatics, vol.9, p.221, 2008.

F. C. Serra, D. Hadad, R. L. Orofino, F. Marinho, C. Lourenço et al., Immune Reconstitution syndrome in patients treated for HIV and tuberculosis in Rio de Janeiro, Braz J Infect Dis, vol.11, pp.462-467, 2007.

S. D. Lawn, G. Meintjes, H. Mcilleron, A. D. Harries, and R. Wood, Management of HIV-associated tuberculosis in resource-limited settings: a state-of-the-art review, BMC Med, vol.11, p.253, 2013.

D. Mavilio, J. Benjamin, M. Daucher, G. Lombardo, S. Kottilil et al., Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates, Proc Natl Acad Sci, vol.100, pp.15011-15017, 2003.

A. Wong, K. Williams, S. Reddy, D. Wilson, J. Giddy et al., Alterations in natural killer cell receptor profiles during HIV type 1 disease progression among chronically infected South African adults, AIDS Res Hum Retroviruses, vol.26, pp.4611-4618, 2005.

A. Méndez, H. Granda, A. Meenagh, S. Contreras, R. Zavaleta et al., Study of KIR genes in tuberculosis patients, Tissue Antigens, vol.68, p.386389, 2006.

F. Bozzano, P. Costa, G. Passalacqua, F. Dodi, S. Ravera et al., Functionally relevant decreases in activatory receptor expression on NK cells are associated with pulmonary tuberculosis in vivo and persist after successful treatment, Int Immunol, vol.21, pp.779-91, 2009.

S. S. Pydi, S. R. Sunder, S. Venkatasubramanian, S. Kovvali, S. Jonnalagada et al., Killer cell immunoglobulin like receptor gene association with tuberculosis, Hum Immunol, vol.74, pp.85-92, 2013.

F. X. Blanc, T. Sok, D. Laureillard, L. Borand, C. Rekacewicz et al., Earlier versus later start of antiretroviral therapy in HIV-infected adults with uberculosis, N Engl J Med, vol.365, pp.1471-81, 2011.

S. M. Abay, K. Deribe, A. A. Reda, S. Biadgilign, D. Datiko et al., The effect of early initiation of antiretroviral therapy in TB/HIV-coinfected patients: a systematic review and meta-analysis, J Int Assoc Provid AIDS Care, vol.14, pp.560-70, 2105.

Y. C. Manabe, J. D. Campbell, E. Sydnor, and R. D. Moore, Immune reconstitution inflammatory syndrome: risk factors and treatment implications, J Acquir Immune Defic Syndr, vol.46, pp.456-62, 2007.

P. M. Grant, L. Komarow, J. Andersen, S. Sanne, I. Pahwa et al., Risk factor analyses for immune reconstitution inflammatory syndrome in a randomized study of early vs. deferred ART during an Opportunistic Infection, PLoS ONE, vol.5, 2010.

D. Tan, A. Lim, Y. K. Yong, S. Ponnampalavanar, S. Omar et al., TLR2-induced cytokine responses may characterize HIV-infected patients experiencing mycobacterial immune restoration disease, AIDS, vol.25, 2011.

A. G. Freud, K. A. Keller, S. D. Scoville, B. L. Mundy-bosse, S. Cheng et al., NKp80 defines a critical step during human natural killer cell development, Cell Rep, vol.16, pp.379-91, 2016.

M. Guma, M. Budt, A. Saez, T. Brckalo, H. Hengel et al., Expansion of CD94/NKG2C NK cells in response to human cytomegalovirus-infected fibroblasts, Blood, vol.107, pp.3624-3655, 2006.

C. Bayard, H. Lepetitcorps, A. Roux, M. Larsen, S. Fastenackels et al., Coordinated expansion of both memory T cells and NK cells in response to CMV infection in humans, Eur J Immunol, vol.46, pp.1168-79, 2016.

J. A. Wagner and T. A. Fehniger, Human adaptive natural killer cells: beyond NKG2C, Trends Immunol, vol.37, pp.351-354, 2016.

D. R. Ram, C. Manickam, B. Hueber, H. L. Itell, S. R. Permar et al., Tracking KLRC2 (NKG2C)+ memory-like NK cells in SIV+ and rhCMV+ rhesus macaques, PLoS Pathog, vol.14, 2018.

M. Garand, M. Goodier, O. Owolabi, S. Donkor, B. Kampmann et al., Functional and phenotypic changes of natural killer cells in whole blood during Mycobacterium tuberculosis infection and disease, Front Immunol, vol.9, p.257, 2018.

R. Vankayalapati, B. Wizel, S. E. Weis, H. Safi, D. L. Lakey et al., The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium, J Immunol, vol.168, pp.3451-3458, 2014.

N. Anfossi, P. André, S. Guia, C. S. Falk, S. Roetynck et al., Human NK cell education by inhibitory receptors for MHC class I, Immunity, vol.25, pp.331-373, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00165596

P. Brodin and P. Höglund, Beyond licensing and disarming: a quantitative view on NK-cell education, Eur J Immunol, vol.38, pp.2934-2941, 2008.

N. Bhatnagar, P. M. Girard, M. Lopez-gonzalez, C. Didier, L. Collias et al., Potential role of V?2+ ??T cells in regulation of immune activation in primary HIV infection. Front Immunol, vol.8, p.1189, 2017.

Z. W. Chen, Protective immune responses of major V?2V?2 T-cell subset in M. tuberculosis infection, Curr Opin Immunol, vol.42, pp.105-117, 2016.

E. M. Janis, S. Kaufmann, R. H. Schwartz, and D. M. Pardoll, Activation of ?? T cells in the primary immune response to Mycobacterium tuberculosis, Science, vol.244, pp.713-719, 1989.

C. K. Vorkas, M. F. Wipperman, K. Li, J. Bean, S. K. Bhattarai et al., Mucosal-associated invariant and ?? T cell subsets respond to initial Mycobacterium tuberculosis infection, JCI Insight, vol.3, p.121899, 2018.

A. Qaqish, D. Huang, C. Y. Chen, Z. Zhang, R. Wang et al., Adoptive transfer of phosphoantigen-specific ?? T cell subset attenuates Mycobacterium tuberculosis infection in nonhuman primates, J Immunol, vol.198, pp.4753-63, 2017.

S. P. Berzins, M. J. Smyth, and A. G. Baxter, Presumed guilty: natural killer T cell defects and human disease, Nat Rev Immunol, vol.11, pp.131-173, 2011.

C. J. Montoya, J. C. Cataño, Z. Ramirez, M. T. Rugeles, S. B. Wilson et al., Invariant NKT cells from HIV-1 or Mycobacterium tuberculosis-infected patients express an activated phenotype, Clin Immunol, vol.127, pp.1-6, 2008.

N. F. Walker, C. Opondo, G. Meintjes, N. Jhilmeet, J. S. Friedland et al., Invariant natural killer T cell dynamics in HIV-associated tuberculosis, Clin Infect Dis, 2019.

S. Porcelli, C. E. Yockey, M. B. Brenner, and S. P. Balk, Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain, J Exp Med, vol.178, pp.1-16, 1993.

P. Dellabona, E. Padovan, G. Casorati, M. Brockhaus, and A. Lanzavecchia, An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8-T cells, J Exp Med, vol.180, pp.1171-1177, 1994.

D. I. Godfrey, K. J. Hammond, L. D. Poulton, M. J. Smyth, and A. G. Baxter, NKT cells: facts, functions and fallacies, Immunol Today, vol.21, pp.573-83, 2000.

M. Fereidouni, A. F. Jabbari, M. Mahmoudi, A. Varasteh, and H. R. Farid, Comparison of two flow cytometric methods for detection of human invariant natural killer Q18 T cells (iNKT), Iran J Immunol, vol.7, pp.1-7, 2010.

B. Perussia, Lymphokine-activated killer cells, natural killer cells and cytokines, Curr Opin Immunol, vol.3, pp.49-55, 1991.

R. Rao, P. V. Rajasekaran, S. Raja, and A. , Natural killer cell-mediated cytokine response among HIV-positive south Indians with pulmonary tuberculosis, J Interferon Cytokine Res, vol.30, pp.33-42, 2010.

M. Frias, A. Rivero-juarez, A. Gordon, A. Camacho, S. Cantisan et al., Persistence of pathological distribution of NK cells in HIV-infected patients with prolonged use of HAART and a sustained immune response, PLoS ONE, vol.10, p.121019, 2015.

J. Mikulak, F. Oriolo, E. Zaghi, D. Vito, C. Mavilio et al., Natural killer cells in HIV-1 infection and therapy, AIDS, vol.31, pp.2317-2347, 2017.

L. Maggi, V. Santarlasci, M. Capone, A. Peired, F. Frosali et al., CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC, Eur J Immunol, vol.40, pp.2174-81, 2010.

A. Kurioka, C. Cosgrove, Y. Imoni, B. Van-wilgenburg, A. Geremia et al., CD161 defines a functionally distinct subset of pro-inflammatory natural killer cells, Front Immunol, vol.9, p.486, 2018.

K. G. Parato, A. Kumar, A. D. Badley, J. L. Sanchez-dardon, K. A. Chambers et al., Normalization of natural killer cell function and phenotype with effective anti-HIV therapy and the role of IL-10, AIDS, vol.16, pp.1251-1257, 2002.

B. Epidemiológico, M. Secretaria-de-vigilância-em-saúde, and . Da-saúde, HIV/AIDS, 2018.