R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, 1992.

N. M. Ferguson, Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, vol.437, pp.209-214, 2005.

J. Wallinga, Optimizing infectious disease interventions during an emerging epidemic, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.923-928, 2010.

M. Baguelin, Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study, PLoS Med, vol.10, p.1001527, 2013.

E. H. Elbasha, Model for assessing human papillomavirus vaccination strategies, Emerg. Infect. Dis, vol.13, pp.28-41, 2007.

M. Biggerstaff, Results from the second year of a collaborative effort to forecast influenza seasons in the United States, Epidemics, vol.24, pp.26-33, 2018.

J. Shaman, Real-time influenza forecasts during the 2012-2013 season, Nat. Commun, vol.4, 2013.

M. Lipsitch and N. Eyal, Improving vaccine trials in infectious disease emergencies, Science, vol.357, pp.153-156, 2017.

R. Kahn, Choices in vaccine trial design in epidemics of emerging infections, PLoS Med, vol.15, p.1002632, 2018.

S. E. Bellan, Statistical power and validity of Ebola vaccine trials in Sierra Leone: a simulation study of trial design and analysis, Lancet Infect. Dis, vol.15, pp.703-710, 2015.

. Who-ebola-response and . Team, Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections, N. Engl. J. Med, vol.371, pp.1481-1495, 2014.

C. Fraser, Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings, Science, vol.324, pp.1557-1561, 2009.

N. C. Grassly and C. Fraser, Mathematical models of infectious disease transmission, Nat. Rev. Microbiol, vol.6, pp.477-487, 2008.

H. Heesterbeek, Modeling infectious disease dynamics in the complex landscape of global health, Science, vol.347, p.4339, 2015.

C. J. Metcalf and J. Lessler, Opportunities and challenges in modeling emerging infectious diseases, Science, vol.357, pp.149-152, 2017.

O. Faye, Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study, Lancet Infect. Dis, vol.15, pp.320-326, 2015.

N. M. Ferguson, PUBLIC HEALTH: Enhanced: Public Health Risk from the Avian H5N1 Influenza Epidemic, Science, vol.304, pp.968-969, 2004.

S. Blumberg and J. O. Lloyd-smith, Comparing methods for estimating R0 from the size distribution of subcritical transmission chains, Epidemics, vol.5, pp.131-145, 2013.

S. Blumberg and J. O. Lloyd-smith, Inference of R(0) and transmission heterogeneity from the size distribution of stuttering chains, PLoS Comput. Biol, vol.9, p.1002993, 2013.

J. O. Lloyd-smith, Superspreading and the effect of individual variation on disease emergence, Nature, vol.438, pp.355-359, 2005.

S. Cauchemez, Using routine surveillance data to estimate the epidemic potential of emerging zoonoses: application to the emergence of US swine origin influenza A H3N2v virus, PLoS Med, vol.10, p.1001399, 2013.

S. Cauchemez, A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data, Stat. Med, vol.23, pp.3469-3487, 2004.

S. Cauchemez, Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States, N. Engl. J. Med, vol.361, pp.2619-2627, 2009.

T. K. Tsang, Household Transmission of Influenza Virus, Trends Microbiol, vol.24, pp.123-133, 2016.

T. K. Tsang, Individual Correlates of Infectivity of Influenza A Virus Infections in Households, PLoS One, vol.11, p.154418, 2016.

T. K. Tsang, Influenza A Virus Shedding and Infectivity in Households, J. Infect. Dis, vol.212, pp.1420-1428, 2015.

T. K. Tsang, Association between antibody titers and protection against influenza virus infection within households, J. Infect. Dis, vol.210, pp.684-692, 2014.

C. A. Donnelly, Serial intervals and the temporal distribution of secondary infections within households of 2009 pandemic influenza A (H1N1): implications for influenza control recommendations, Clin. Infect. Dis, vol.52, pp.123-153, 2011.

S. Cauchemez, Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza, Proceedings of the National Academy of Sciences, vol.108, pp.2825-2830, 2011.

H. Salje, How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.13420-13425, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01399365

J. Wallinga and M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers, Proc. Biol. Sci, vol.274, pp.599-604, 2007.

C. E. Mills, Transmissibility of 1918 pandemic influenza, Nature, vol.432, pp.904-906, 2004.

J. Wallinga and P. Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, Am. J. Epidemiol, vol.160, pp.509-516, 2004.

A. Cori, A new framework and software to estimate time-varying reproduction numbers during epidemics, Am. J. Epidemiol, vol.178, pp.1505-1512, 2013.

S. Cauchemez, Estimating in real time the efficacy of measures to control emerging communicable diseases, Am. J. Epidemiol, vol.164, pp.591-597, 2006.

S. Cauchemez, Real-time estimates in early detection of SARS, Emerg. Infect. Dis, vol.12, pp.110-113, 2006.

M. E. Smith, Assessing endgame strategies for the elimination of lymphatic filariasis: A model-based evaluation of the impact of DEC-medicated salt, Sci. Rep, vol.7, p.7386, 2017.

E. Michael, Mathematical models and lymphatic filariasis control: endpoints and optimal interventions, Trends Parasitol, vol.22, pp.226-233, 2006.

A. Arakala, Estimating the elimination feasibility in the "end game" of control efforts for parasites subjected to regular mass drug administration: Methods and their application to schistosomiasis, PLoS Negl. Trop. Dis, vol.12, p.6794, 2018.

B. F. Finkenstädt and B. T. Grenfell, Time series modelling of childhood diseases: a dynamical systems approach, J. R. Stat. Soc. Ser. C Appl. Stat, vol.49, pp.187-205, 2000.

J. Shaman, Absolute humidity and the seasonal onset of influenza in the continental United States, PLoS Biol, vol.8, p.1000316, 2010.

T. A. Perkins, Estimating drivers of autochthonous transmission of chikungunya virus in its invasion of the americas, PLoS Curr, vol.7, 2015.

M. C. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in U.S. cities, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.7588-7593, 2007.

S. Takahashi, Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan, J. R. Soc. Interface, vol.15, 2018.

N. G. Reich, Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity, J. R. Soc. Interface, vol.10, 2013.

A. B. Sabin, Research on dengue during World War II, Am. J. Trop. Med. Hyg, vol.1, pp.30-50, 1952.

A. B. Sabin, The dengue group of viruses and its family relationships, Bacteriol. Rev, vol.14, pp.225-232, 1950.

N. Hens, Seventy-five years of estimating the force of infection from current status data, Epidemiol. Infect, vol.138, pp.802-812, 2010.

H. Salje, Reconstruction of 60 Years of Chikungunya Epidemiology in the Philippines Demonstrates Episodic and Focal Transmission, J. Infect. Dis, vol.213, pp.604-610, 2016.

Z. M. Cucunubá, Modelling historical changes in the force-of-infection of Chagas disease to inform control and elimination programmes: application in Colombia, BMJ Glob Health, vol.2, p.345, 2017.

C. J. Drakeley, Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.5108-5113, 2005.

K. A. Kusi, Seroprevalence of Antibodies against Plasmodium falciparum Sporozoite Antigens as Predictive Disease Transmission Markers in an Area of Ghana with Seasonal Malaria Transmission, PLoS One, vol.11, p.167175, 2016.

J. Lessler, Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia, Am. J. Epidemiol, vol.183, pp.657-663, 2016.

C. Pelat, Optimizing the precision of case fatality ratio estimates under the surveillance pyramid approach, Am. J. Epidemiol, vol.180, pp.1036-1046, 2014.

A. M. Presanis, The severity of pandemic H1N1 influenza in the United States, PLoS Med, vol.6, p.1000207, 2009.

C. Fraser, Influenza transmission in households during the 1918 pandemic, Am. J. Epidemiol, vol.174, pp.505-514, 2011.

I. M. Longini, . Jr, and J. S. Koopman, Household and community transmission parameters from final distributions of infections in households, Biometrics, vol.38, pp.115-126, 1982.

S. E. Bellan, How to Make Epidemiological Training Infectious, PLoS Biol, vol.10, p.1001295, 2012.

O. N. Bjørnstad, Epidemics: Models and Data with R, 2018.

M. Salathé, Digital epidemiology: what is it, and where is it going?, Life Sci Soc Policy, vol.14, p.1, 2018.

N. R. Faria, Establishment and cryptic transmission of Zika virus in Brazil and the Americas, Nature, vol.546, pp.406-410, 2017.

G. Dudas, Virus genomes reveal factors that spread and sustained the Ebola epidemic, Nature, vol.544, pp.309-315, 2017.

J. Mossong, Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med, vol.5, p.74, 2008.

S. Funk, Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, vol.10, pp.21-25, 2015.

E. L. Ionides, Inference for nonlinear dynamical systems, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.18438-18443, 2006.

A. A. King, Inapparent infections and cholera dynamics, Nature, vol.454, pp.877-880, 2008.

J. Dureau, Capturing the time-varying drivers of an epidemic using stochastic dynamical systems, Biostatistics, vol.14, pp.541-555, 2013.