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Abstract  

Mathematical models play an increasingly important role in our understanding of the 

transmission and control of infectious diseases. Here, we present concrete examples 

illustrating how mathematical models paired with rigorous statistical methods are used to 

parse data of different levels of detail and breadth and estimate key epidemiological 

parameters (e.g. transmission and its determinants, severity, impact of interventions, drivers 

of epidemic dynamics) even when these parameters are not directly measurable, when data 

are limited and the epidemic process is only partially observed. Finally, we assess the hurdles 

to be taken to increase availability and applicability of these approaches in an effort to 

ultimately enhance their public health impact.   
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Main text  

 

The multiple contributions of modelling to the study of infectious disease 

Over the last 30 years, mathematical modeling has become an essential tool for the study of 

infectious diseases epidemics [1]. Such approach is complementary to traditional methods in 

that, contrary to classical epidemiological methods common to both communicable and non-

communicable diseases, modelling explicitly accounts for the interactions between 

individuals in an effort to explain the complex transmission dynamics inherent to the spread 

of infectious diseases in populations. Mathematical models are now commonly used to 

address a variety of questions that can inform policy making, e.g. the optimal allocation of 

intervention measures [2,3], the planning and evaluation of vaccination programs [4,5], 

nowcasting and forecasting [6,7], the design and evaluation of vaccine efficacy in clinical trials 

[8–10], or real-time risk assessment during epidemics [11,12]. A number of reviews have 

already covered different aspects of this quickly expanding field. For example, Grassly and 

Fraser explained basic principles [13] while Heesterbeek et al [14] and Metcalf and Lessler 

[15] discussed their use and impact on policy making in the context of the complex landscape 

of global health and major emerging infectious diseases outbreaks. 

 

Here, we will focus on yet another contribution of modelling and show how the use of these 

techniques can considerably strengthen the analyses of epidemiological data collected during 

epidemic. We will take the perspective of an epidemiologist who collected data during an 

epidemic and is now at the difficult stage of trying to estimate key epidemiological parameters 

(e.g. transmissibility, severity, proportion of asymptomatic infections, impact of interventions, 

drivers of spread and control) from these data, in a context where data collection may be 

affected by selection bias (e.g. severe cases are more likely to be detected), under-reporting 

or missing data issues (e.g. the source of infection of a case is unknown) and where the 



 

parameters of interest may therefore not be directly measurable. We will highlight with 

concrete examples how modelling techniques have proved instrumental in tackling 

challenges associated with the analysis of such imperfect data, estimating key 

epidemiological parameters, and gaining essential insight into the underlying epidemic 

process.   

 

Estimating transmissibility and transmission risk factors 

The reproduction number 𝑅 (see Glossary) (also called the effective reproduction number) 

characterizes the level of transmission at a given time during an epidemic and is defined as 

the mean number of secondary infections caused by a case at that time. The epidemic can 

affect a substantial proportion of the population only if 𝑅 > 1[1]. 

 

The most natural way to estimate reproduction numbers is to rely on data documenting chains 

of transmission (Fig. 1A). For example, during the large epidemic of Ebola in West Africa, 

major efforts were implemented to identify and reconstruct these chains. Fay et al analyzed 

such data for Conakry, the capital city of Guinea, during the first part of the epidemic 

(February to August 2014) [16]. When the information about who was infected by whom is 

available, estimating reproduction numbers is straightforward and just a matter of counting 

secondary infections for each individual case. From these data, Faye et al estimated that, at 

the start of the epidemic, an Ebola case infected on average 1.4, 0.4 and 0.5 contacts in the 

community, the hospital, and funerals settings, respectively, and that there was an important 

reduction of transmission in hospitals and funerals once controls were in place. They also 

demonstrated that hospitalization of cases halved their transmission potential in the 

community, highlighting the critical role of prompt case isolation to reduce community 

transmission; and that healthcare workers, who were at high risk of infection, contributed little 

to transmission.  



 

 

While data on chains of transmission are highly valuable, they are difficult or impossible to 

collect for many pathogens and thus extremely rare. Modelers have therefore developed 

alternative approaches to characterize transmission from more partial and incomplete data. 

For example, upon the emergence of the highly pathogenic avian influenza strain H5N1, the 

prospect of a major severe influenza pandemic was raised if the virus were to increase its 

potential for inter-human transmission. In such situations where we are confronted with 

stuttering chains of transmission in humans, Ferguson et al argued that it would be possible 

to detect any such increase from the examination of the size of clusters of human cases (i.e. 

the number of human infections generated from a spillover from the reservoir) (Fig. 1B)[17]. 

This is because the average size 𝐶 of a cluster is expected to increase with the reproduction 

number 𝑅, with the simple relationship 𝐶 = 1/(1 − 𝑅). However, a potential difficulty in using 

cluster size to evaluate transmissibility is that selection biases (e.g. larger clusters are more 

likely to be detected) or underreporting (i.e. a proportion of cases are missed during 

investigations) may bias inference in different directions. Methods have therefore been 

proposed to correct for such effects [18]. It is also well acknowledged that case-to-case 

heterogeneity in infectivity that can cause superspreading events must be accounted for 

[19,20].  

 

These approaches may sometimes prove impractical if it is not possible to measure the size 

of human clusters. For example, in 2012, human cases of swine origin influenza A H3N2v 

infections were detected in the USA, in particular among people attending animal fairs [21]. 

The large volume of visitors at these fairs prevented the implementation of thorough 

epidemiological investigations required to identify all infected persons and determine cluster 

sizes. How then to interpret the observation that 50% of cases detected by viral surveillance 

had not been exposed to swines? Was that the sign of a starting pandemic? When we 



 

observe a set of independent cases for whom the likely source of infection (human vs 

reservoir) has been identified, the reproduction number 𝑅 can be estimated from the 

proportion 𝐹 of cases linked to the reservoir, with the simple formula: 𝑅 = 1 − 𝐹 = 0.5 [21]. 

While the transmission potential of the H3N2v strain was higher than that of other swine 

strains, it was therefore still substantially smaller than what is required to generate a pandemic 

(i.e. 𝑅<1). Estimation methods based on the size of human clusters or the proportion of cases 

linked to the reservoir are most relevant for situations where stuttering chains of transmission 

are observed (i.e. there is not yet strong evidence for high interhuman transmission potential) 

since a point estimate for 𝑅 is available with these methods only when 𝑅<1. These methods 

can be used to test the hypothesis that 𝑅>1; but if the hypothesis cannot be rejected, other 

approaches and types of data will be required to derive a point estimate of 𝑅.   

 

Data collected during detailed outbreak investigations can provide critical insights into 

transmission patterns. For example, if two members of the same household become sick with 

the delay between symptom onsets roughly equal to the serial interval of the disease, this 

may suggest that the first case infected the second. However, other sources of infection (e.g. 

from outside the household or from other household members) cannot be excluded. Statistical 

methods have been developed to probabilistically reconstruct chains of transmission and infer 

transmission risk factors from data gathered during outbreak investigations where all 

members of a social structure (e.g. household, school, village) are investigated and times of 

symptom onset are recorded. These methods were used extensively to characterize the 

transmission of influenza in households from a powerful study design where household 

contacts of confirmed influenza cases are followed-up for a few weeks after symptom onset 

of the first case. These analyses provided key insights about the determinants of influenza 

transmission such as estimates of the risk of household transmission and how this varies with 



 

household size, the infectivity and susceptibility of children relative to adults, the serial interval 

of influenza (which is important to determine for how long cases should be isolated, to assess 

the impact of treatment delays on transmission or estimate other parameters such as the 

reproduction number), the relationship between viral shedding and infectivity, and the 

protective effect of baseline antibody titers [2,22–28]. These methods have also been used 

to investigate transmission in more complex social settings such as a school [29] or a small 

village [30]. In the latter example, Salje et al were able to estimate that chikungunya 

transmission occurred on average at about 100 m from the household location, based on a 

detailed investigation of a chikungunya outbreak in a village in Bangladesh where each 

household was geotagged [30].  

 

Epidemic time series, which are often available through routine surveillance, can also be used 

to decipher fundamental aspects of spread and estimate parameters such as the reproduction 

number. The number of cases at the start of an epidemic usually grows exponentially, which 

means that the number of cases at time 𝑡 can be modelled as 𝐼(𝑡) = 𝐼0𝑒௥௧ , where 𝐼0 is the 

number of cases at time 0 and 𝑟 is the exponential growth rate. During exponential growth, 

the logarithm of the number of cases grows linearly (𝑙𝑛(𝐼(𝑡)) = 𝑙𝑛(𝐼0) + 𝑟𝑡) so that the 

exponential growth rate parameter 𝑟 can be estimated with a simple linear regression of the 

log-incidence. The reproduction number 𝑅 can then be derived from the exponential growth 

rate estimate and the distribution of the generation time of the disease (Fig. 1C) [31]. For a 

simple model like the Susceptible-Infected-Recovered (SIR) model (see Box 1), the 

reproduction number can be estimated as 𝑅 = 1 + 𝑟. 𝐺𝑇, where 𝐺𝑇 is the mean generation 

time. Mills et al used such approach to estimate the reproduction number of the 1918 

influenza pandemic from the analysis of weekly mortality records in 45 US cities and inform 

efforts to prepare for a severe influenza pandemic [32].  



 

 

It is important to note that a number of extrinsic factors such as interventions, climate, 

entomological or social factors may impact the reproduction number over time. Methods have 

therefore been developed to track trends in the reproduction number during the course of an 

epidemic, again from the analysis of the epidemic curve and prior knowledge about the 

generation time (Fig. 1D) [33]. These approaches for example showed that, during the SARS 

epidemic in Hong Kong in 2001, the reproduction number dropped from 3.6 to 0.7 following 

the implementation of control measures [33]. Extensions have since been proposed to ensure 

estimates can be provided in near real-time, even when some of the secondary infections 

have not been detected yet [34–36].  

 

Similarly, changes in the reproduction number over time can indicate whether a disease 

system is nearing elimination, such as in response to mass drug administration campaigns 

against parasitic worm diseases, including schistosomiasis, onchocerciasis, and lymphatic 

filariasis. Assessing whether a disease system has reached its breakpoint, i.e., a state below 

which parasite densities are too low for the population to sustain, is critically important to 

determine whether it is warranted to end a campaign. Typically, such questions are 

addressed by fitting complex transmission models to epidemiological data (e.g. annual 

microfilaria prevalence levels) and examining whether the system, under the fitted 

parameters, indeed approaches elimination and with what level of certainty [37,38]. Recent 

efforts have focussed on more general, ‘model-free’ approaches that are based on the idea 

that parasite populations below the breakpoint exhibit dynamics that can be distinguished in 

epidemiological data of parasite burden or prevalence [39]. Specifically, the authors 

demonstrate a direct relationship between the reproduction number (for macroparasites the 

mean number of parasites produced by a single reproductive parasite) and the rate of change 

of the empirically measured mean worm burden, as captured by the elimination feasibility 



 

coefficient. Such efforts critically rely on measurements of infection intensity both prior to and 

during campaigns, as well as reliable data on treatment coverage.    

 

Unravelling drivers of epidemic dynamics 

When the disease starts to affect a substantial proportion of a population, evaluating the 

impact of extrinsic factors on transmission is complicated by the fact that the reproduction 

number 𝑅(𝑡) at time 𝑡 also depends on the level of immunity in the population at that time: 

𝑅(𝑡) = 𝑅0(𝑡). 𝑆(𝑡) where 𝑅0(𝑡) is the basic reproduction number (i.e. the expected number of 

secondary infections caused by a case if the whole population was susceptible, under 

conditions equal to those observed at time 𝑡)  and 𝑆(𝑡) is the proportion of susceptible 

individuals in the population. As immunity builds up in the population, the effective 

reproduction number is therefore expected to decline, even if there is no change in conditions 

(e.g., climatic conditions, control efforts, behavior change). To ensure estimates of the impact 

of extrinsic factors are not biased, it is therefore important to correctly account for the 

depletion of susceptible individuals in the population. To this end a suite of compartmental, 

SIR-type models, were developed to track the build-up of immunity along with other key 

quantities such as the number of infections (see Box 1).  

 

These models have proved extremely useful to understand the complex interplay between 

transmission factors and immunity in the shaping of epidemics. Consider measles, which 

caused important cyclical outbreaks in industrialized countries before vaccine introduction. 

Fitting such models to biweekly measles notifications from England and Wales during 1944-

1964, Finkenstaedt and Grenfell demonstrated that fluctuations of the susceptible population 

(driven by infections and births) and seasonal variations in the transmission rate (driven by 

school holidays) were necessary to explain the observed cyclical patterns of outbreaks during 

that time period [40]. Moreover, the study showed that the shift from annual to biannual cycles 



 

after 1950 was explained by a reduction in birth rates, resulting in a slower replenishment of 

the susceptible population, and that only about 50% of measles cases were reported.  

 

The framework also helped to decipher the drivers of epidemic seasonality or the impact of 

interventions. For example, from US influenza-related mortality data, Shaman et al 

demonstrated that the transmission of influenza was strongly modulated by absolute humidity 

[41] while Perkins et al analyzed chikungunya surveillance data from 50 countries to describe 

how chikungunya transmission was impacted by temperature and precipitation [42]. During 

the 1918 pandemic influenza, Bootsma et al observed stark heterogeneity in the presence 

and size of a second wave (the autumn wave) across US cities; more than seen in European 

cities, where only one city experienced a second wave [43]. The authors posited the 

hypothesis that autumn waves resulted from imperfect, short-lived efforts that controlled 

transmission during the first wave, yet, when lifted, facilitated a second wave due to a 

susceptible population larger than would be expected in the absence of control. To test this 

hypothesis and estimate the impact of social distancing (e.g., school closures, banning of 

mass gatherings, case isolation, and hygiene measures), the authors fitted SEIR-type 

models (see Box 1) to observed time series of pneumonic and influenza mortality. They found 

that i) including both a time-limited effect of social distancing (as informed by onset and end 

dates of control) and changes in contact rates in response to increasing mortality best 

explained the observed time series, and that ii) the impact of control efforts was limited 

(reduction in mortality 10-30%) yet could have been improved if they were implemented 

earlier and left in place for longer.  

 

Models have also been used to parse epidemiological data and assess the presence, 

strength, and duration of cross-immunity (i.e., where infection by one strain or serotype results 

in immunity against others) and other complex mechanisms of immunity. SIR-type models 



 

(see Box 1) can be expanded to account for the circulation of multiple strains with cross-

immunity and waning of immunity, among others. By comparing the fit of models with and 

without cross-immunity to enterovirus surveillance data in Japan, Takahashi et al. 

demonstrated that following infection by enterovirus serotype A16, individuals are immune to 

infection by closely related enterovirus serotype A71 for two months [44]. Similarly, Reich et 

al. estimated that individuals infected by one of the four dengue serotypes remained immune 

to the other serotypes for 1-3 years, based on 30 years of serotyped monthly dengue 

notification data from Thailand [45][46,47].  

 

Reconstructing transmission history from serological data 

While time-series of cases have proven helpful to disentangle a multitude of epidemiological 

processes, for infectious diseases with limited surveillance capacities and a high risk of 

misdiagnosis, alternative data types and associated methods are needed to answer questions 

about the history of pathogen circulation. In such situation, age-stratified serological surveys, 

which assess immunological markers of previous infections, can be used to reconstruct the 

history of circulation of a pathogen in the population. Consider a disease system where 

infection causes life-long immunity. In a scenario where a single epidemic of the pathogen 

occurred fifteen years ago (i.e. in 2003) and infected 30% of the population, we would expect 

that 30% of those aged 15 years or older in 2018 are seropositive while none of those aged 

<15 year should be (Fig. 2A,B, red line). In contrast, if there was constant low-level circulation 

of the pathogen, we would expect seroprevalence to increase gradually with age (Fig. 2A,B, 

blue line). The age-stratified seroprevalence therefore contains a strong signature of the long-

term history of pathogen circulation. Serocatalytic models have been developed to formally 

reconstruct year-to-year variations in the force of infection from such data [48]. Based on 

two age-stratified serological studies, Salje et al. used these approaches to show that over 

the last sixty years four distinct chikungunya outbreaks occurred in the Philippines, each 



 

affecting about a quarter of the population [49]. Similarly, combining age-stratified data from 

over a hundred serosurveys, Cucunaba et al. used catalytic models to quantify the impact of 

the Chagas disease control and elimination program in Colombia during the last three 

decades [50]. The study showed that, while the force of infection dropped by up to 90% in 

urban settings, it remained constant in remote areas, highlighting major geographic variations 

in program impact. 

 

The classical catalytic models can be modified to relax the hypothesis of lifelong immunity. 

Reversible catalytic models were particularly used for malaria, where each individual is born 

susceptible, can become seropositive upon malaria exposure but later revert to the 

susceptible state. Seroreversion leads to a plateau in the age-profile of seroprevalence that 

accounts for the switching of individuals between immune and susceptible states (Fig. 2C). 

Using these methods, Drakeley et al investigated the prevalence of IgG antibodies of 

Plasmodium falciparum antigens in several locations of Tanzania, and estimated a half-life of 

fifty years for MSP-119 antibody as well as the rates of seroconversion [51]. Reversible 

catalytic models were used in other settings, for instance in Northern Ghana [52], where the 

authors established the wide heterogeneity in seroconversion and seroreversion rates 

between the antibodies to antigens specific to various stages of the parasite life cycle. 

 

Quantifying asymptomatic infections and disease severity 

The clinical presentation for many diseases can vary from fully asymptomatic to severe 

symptoms requiring hospitalization and death. Quantifying the proportion of subclinical 

infections or measures of severity such as the case fatality ratio (CFR) is crucial to 

understanding epidemic dynamics and disease burden. This is however a challenging task. 

For example, in 2009, when swine-origin influenza pandemic H1N1pdm09 started in Mexico, 

the first estimates of the CFR obtained from Mexican surveillance data by dividing the number 



 

of reported deaths by the number of reported cases overestimated the CFR by two orders of 

magnitude. This is because while deaths (i.e. the numerator of the CFR) were relatively well 

reported, only very severe cases were picked up by surveillance and so the total number of 

infections (i.e. the denominator of the CFR) was completely underestimated. To estimate this 

denominator, Fraser et al decided that, instead of using data from Mexican surveillance that 

was getting saturated and missed a lot of mild cases, they would rely on surveillance 

implemented by developed countries around the world to detect sick travelers returning from 

Mexico as it was likely to have better sensitivity [12]. From the number of influenza cases 

detected among returning travelers and air passenger data documenting the total number of 

travelers returning from Mexico and the average duration of stay in Mexico, they were able to 

back-calculate the size of the Mexican epidemic and derive the CFR. This was done under 

the assumption that visitors mixed perfectly with the Mexican population. Their estimate of 

the CFR was lower than the one obtained from the Mexican surveillance; but it still 

overestimated the CFR, possibly because travelers were actually less likely to be exposed to 

influenza than Mexican inhabitants due to inhomogeneous mixing.  

 

In contrast, to estimate the total number of MERS-CoV infections in Saudi Arabia, Lessler et 

al relied on a detailed comparison of cases detected by passive (e.g. cases identified because 

they seek care with MERS-like symptoms) and active surveillance (e.g. investigation of the 

contacts of confirmed cases) [53]. The two surveillance systems each present their own 

strengths and weaknesses: passive surveillance is expected to detect most severe cases but 

will overestimate severity; while active surveillance is far from exhaustive but should provide 

more accurate estimates of the proportion of infections that become symptomatic. By 

combining data from the two systems, Lessler et al. were able to derive from the number of 

severe cases (passive surveillance data) and the severity profile of cases (active surveillance 

data) the total number of MERS-CoV infections. They estimated that about half of MERS-



 

CoV infections had been missed by surveillance in 2012-2014 with the probability of 

developing symptoms ranging from 11% in persons under 10 years old to 88% in those aged 

>70 years old.   

 

For a pathogen with low severity like the H1N1pdm09 pandemic influenza strain, it may prove 

difficult to estimate the CFR from a single cohort of infected individuals as this would require 

very large numbers of participants [54]. Instead, Presanis et al. derived “pyramidal” estimates 

of severity [55]. To estimate the symptomatic CFR, i.e. the proportion of symptomatic cases 

who died, they considered the conditional probabilities of the different steps a symptomatic 

case has to go through before dying: the probability of medical attendance among 

symptomatic cases, the probability of hospitalization among medically attended, and the 

probability of death after hospitalization (Fig. 3). Each probability was estimated using 

different datasets: a CDC survey on health-seeking behaviors following influenza-like 

illnesses, a study among medically attended infection in Milwaukee, another study among 

hospitalized cases in New York. The symptomatic case fatality ratio was estimated at 0.048%.  

 

Finally, even when asymptomatic or inapparent infections are not observed at all, the impact 

they have on the epidemic dynamics may be observed on apparently unrelated statistics, 

providing a pathway to characterize them. For example, Fraser et al used reporting of 

symptoms during the 1918 influenza outbreak in a large sample of households in Baltimore 

to estimate the proportion of asymptomatic infections [56]. The main idea behind their 

approach is that if a large proportion of household members report symptoms, this indicates 

that the proportion of asymptomatic infections cannot be very high. The authors used a chain-

binomial model [57], which describes the expected distribution of households according to 

their size and the number of infected members given two parameters: the probability of 

contracting the infection from the community (i.e. outside of the household) and the probability 



 

of transmission from an infected member of the household to a susceptible one. This classical 

model was expanded to include a probability of asymptomatic infection, and thus to describe 

the expected distribution of households according to their size and the number of members 

reporting symptoms. The authors concluded that during the 1918 influenza pandemic, the 

probability of asymptomatic infection was very low (<6%).  

 

Concluding remarks 

In conclusion, modelling has become an important tool to enhance the analysis of imperfect 

epidemic data and estimate key epidemiological parameters even when they are not directly 

measurable or when data are limited and imperfect. There are however important hurdles to 

overcome before the methods discussed here can be used by all (see “Outstanding 

questions”). First, a lot of infectious disease epidemiologists may simply be unaware of these 

developments and it is important to better communicate these approaches to this audience 

for example in reviews such as this one and with concrete examples. Interested 

epidemiologists are encouraged to receive training in epidemic modelling, for example by 

attending one of the few dedicated short courses. While short course participants are unlikely 

to become expert modelers after one or two weeks training, these courses can prove 

extremely helpful to build a deeper understanding of the field and what can and cannot be 

achieved with modelling [58]. Another important challenge to make these approaches 

available to all is the persisting lack of user-friendly software designed for non-experts [34] 

although important efforts are being made to address this gap (see for example the RECON 

initiative1 or increasingly common code-sharing efforts [59]). While a lot of simple tasks can 

be automated in generic and user-friendly tools, the analysis of more complex datasets with 

relatively atypical structures is likely to benefit from the investment of expert modelers, which 

                                                
1 https://www.repidemicsconsortium.org/ 



 

can best be achieved through collaboration. These collaborations are particularly important 

during epidemic crises where it is essential to develop an efficient flow to quickly collect, 

process, and analyze data and report results back to the public health community [11]. Finally, 

while we focused this paper on the analyses of epidemiological data gathered during 

infectious disease epidemics, major developments are ongoing to better integrate other types 

of data (e.g. social media [60], viral genetic sequences [61,62], contact and behavioral data 

[63,64]) into these analyses as well. 

 

References 

1  Anderson, R.M. and May, R.M. (1992) Infectious Diseases of Humans: Dynamics and 
Control, Oxford University Press. 

2  Ferguson, N.M. et al. (2005) Strategies for containing an emerging influenza pandemic 
in Southeast Asia. Nature 437, 209–214 

3  Wallinga, J. et al. (2010) Optimizing infectious disease interventions during an 
emerging epidemic. Proc. Natl. Acad. Sci. U. S. A. 107, 923–928 

4  Baguelin, M. et al. (2013) Assessing optimal target populations for influenza 
vaccination programmes: an evidence synthesis and modelling study. PLoS Med. 10, 
e1001527 

5  Elbasha, E.H. et al. (2007) Model for assessing human papillomavirus vaccination 
strategies. Emerg. Infect. Dis. 13, 28–41 

6  Biggerstaff, M. et al. (2018) Results from the second year of a collaborative effort to 
forecast influenza seasons in the United States. Epidemics 24, 26–33 

7  Shaman, J. et al. (2013) Real-time influenza forecasts during the 2012–2013 season. 
Nat. Commun. 4, 

8  Lipsitch, M. and Eyal, N. (2017) Improving vaccine trials in infectious disease 
emergencies. Science 357, 153–156 

9  Kahn, R. et al. (2018) Choices in vaccine trial design in epidemics of emerging 
infections. PLoS Med. 15, e1002632 

10  Bellan, S.E. et al. (2015) Statistical power and validity of Ebola vaccine trials in Sierra 
Leone: a simulation study of trial design and analysis. Lancet Infect. Dis. 15, 703–710 

11  WHO Ebola Response Team et al. (2014) Ebola virus disease in West Africa--the first 9 
months of the epidemic and forward projections. N. Engl. J. Med. 371, 1481–1495 

12  Fraser, C. et al. (2009) Pandemic Potential of a Strain of Influenza A (H1N1): Early 
Findings. Science 324, 1557–1561 

13  Grassly, N.C. and Fraser, C. (2008) Mathematical models of infectious disease 
transmission. Nat. Rev. Microbiol. 6, 477–487 

14  Heesterbeek, H. et al. (2015) Modeling infectious disease dynamics in the complex 
landscape of global health. Science 347, aaa4339 

15  Metcalf, C.J.E. and Lessler, J. (2017) Opportunities and challenges in modeling 
emerging infectious diseases. Science 357, 149–152 

16  Faye, O. et al. (2015) Chains of transmission and control of Ebola virus disease in 
Conakry, Guinea, in 2014: an observational study. Lancet Infect. Dis. 15, 320–326 



 

17  Ferguson, N.M. (2004) PUBLIC HEALTH: Enhanced: Public Health Risk from the Avian 
H5N1 Influenza Epidemic. Science 304, 968–969 

18  Blumberg, S. and Lloyd-Smith, J.O. (2013) Comparing methods for estimating R0 from 
the size distribution of subcritical transmission chains. Epidemics 5, 131–145 

19  Blumberg, S. and Lloyd-Smith, J.O. (2013) Inference of R(0) and transmission 
heterogeneity from the size distribution of stuttering chains. PLoS Comput. Biol. 9, 
e1002993 

20  Lloyd-Smith, J.O. et al. (2005) Superspreading and the effect of individual variation on 
disease emergence. Nature 438, 355–359 

21  Cauchemez, S. et al. (2013) Using routine surveillance data to estimate the epidemic 
potential of emerging zoonoses: application to the emergence of US swine origin 
influenza A H3N2v virus. PLoS Med. 10, e1001399 

22  Cauchemez, S. et al. (2004) A Bayesian MCMC approach to study transmission of 
influenza: application to household longitudinal data. Stat. Med. 23, 3469–3487 

23  Cauchemez, S. et al. (2009) Household transmission of 2009 pandemic influenza A 
(H1N1) virus in the United States. N. Engl. J. Med. 361, 2619–2627 

24  Tsang, T.K. et al. (2016) Household Transmission of Influenza Virus. Trends Microbiol. 
24, 123–133 

25  Tsang, T.K. et al. (2016) Individual Correlates of Infectivity of Influenza A Virus 
Infections in Households. PLoS One 11, e0154418 

26  Tsang, T.K. et al. (2015) Influenza A Virus Shedding and Infectivity in Households. J. 
Infect. Dis. 212, 1420–1428 

27  Tsang, T.K. et al. (2014) Association between antibody titers and protection against 
influenza virus infection within households. J. Infect. Dis. 210, 684–692 

28  Donnelly, C.A. et al. (2011) Serial intervals and the temporal distribution of secondary 
infections within households of 2009 pandemic influenza A (H1N1): implications for 
influenza control recommendations. Clin. Infect. Dis. 52 Suppl 1, S123–30 

29  Cauchemez, S. et al. (2011) Role of social networks in shaping disease transmission 
during a community outbreak of 2009 H1N1 pandemic influenza. Proceedings of the 
National Academy of Sciences 108, 2825–2830 

30  Salje, H. et al. (2016) How social structures, space, and behaviors shape the spread of 
infectious diseases using chikungunya as a case study. Proc. Natl. Acad. Sci. U. S. A. 
113, 13420–13425 

31  Wallinga, J. and Lipsitch, M. (2007) How generation intervals shape the relationship 
between growth rates and reproductive numbers. Proc. Biol. Sci. 274, 599–604 

32  Mills, C.E. et al. (2004) Transmissibility of 1918 pandemic influenza. Nature 432, 904–
906 

33  Wallinga, J. and Teunis, P. (2004) Different epidemic curves for severe acute 
respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 
160, 509–516 

34  Cori, A. et al. (2013) A new framework and software to estimate time-varying 
reproduction numbers during epidemics. Am. J. Epidemiol. 178, 1505–1512 

35  Cauchemez, S. et al. (2006) Estimating in real time the efficacy of measures to control 
emerging communicable diseases. Am. J. Epidemiol. 164, 591–597 

36  Cauchemez, S. et al. (2006) Real-time estimates in early detection of SARS. Emerg. 
Infect. Dis. 12, 110–113 

37  Smith, M.E. et al. (2017) Assessing endgame strategies for the elimination of lymphatic 
filariasis: A model-based evaluation of the impact of DEC-medicated salt. Sci. Rep. 7, 
7386 

38  Michael, E. et al. (2006) Mathematical models and lymphatic filariasis control: 
endpoints and optimal interventions. Trends Parasitol. 22, 226–233 



 

39  Arakala, A. et al. (2018) Estimating the elimination feasibility in the “end game” of 
control efforts for parasites subjected to regular mass drug administration: Methods and 
their application to schistosomiasis. PLoS Negl. Trop. Dis. 12, e0006794 

40  Finkenstädt, B.F. and Grenfell, B.T. (2000) Time series modelling of childhood 
diseases: a dynamical systems approach. J. R. Stat. Soc. Ser. C Appl. Stat. 49, 187–
205 

41  Shaman, J. et al. (2010) Absolute humidity and the seasonal onset of influenza in the 
continental United States. PLoS Biol. 8, e1000316 

42  Perkins, T.A. et al. (2015) Estimating drivers of autochthonous transmission of 
chikungunya virus in its invasion of the americas. PLoS Curr. 7, 

43  Bootsma, M.C.J. and Ferguson, N.M. (2007) The effect of public health measures on 
the 1918 influenza pandemic in U.S. cities. Proc. Natl. Acad. Sci. U. S. A. 104, 7588–
7593 

44  Takahashi, S. et al. (2018) Epidemic dynamics, interactions and predictability of 
enteroviruses associated with hand, foot and mouth disease in Japan. J. R. Soc. 
Interface 15, 

45  Reich, N.G. et al. (2013) Interactions between serotypes of dengue highlight 
epidemiological impact of cross-immunity. J. R. Soc. Interface 10, 20130414 

46  Sabin, A.B. (1952) Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1, 
30–50 

47  Sabin, A.B. (1950) The dengue group of viruses and its family relationships. Bacteriol. 
Rev. 14, 225–232 

48  Hens, N. et al. (2010) Seventy-five years of estimating the force of infection from 
current status data. Epidemiol. Infect. 138, 802–812 

49  Salje, H. et al. (2016) Reconstruction of 60 Years of Chikungunya Epidemiology in the 
Philippines Demonstrates Episodic and Focal Transmission. J. Infect. Dis. 213, 604–
610 

50  Cucunubá, Z.M. et al. (2017) Modelling historical changes in the force-of-infection of 
Chagas disease to inform control and elimination programmes: application in Colombia. 
BMJ Glob Health 2, e000345 

51  Drakeley, C.J. et al. (2005) Estimating medium- and long-term trends in malaria 
transmission by using serological markers of malaria exposure. Proc. Natl. Acad. Sci. 
U. S. A. 102, 5108–5113 

52  Kusi, K.A. et al. (2016) Seroprevalence of Antibodies against Plasmodium falciparum 
Sporozoite Antigens as Predictive Disease Transmission Markers in an Area of Ghana 
with Seasonal Malaria Transmission. PLoS One 11, e0167175 

53  Lessler, J. et al. (2016) Estimating the Severity and Subclinical Burden of Middle East 
Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia. Am. J. 
Epidemiol. 183, 657–663 

54  Pelat, C. et al. (2014) Optimizing the precision of case fatality ratio estimates under the 
surveillance pyramid approach. Am. J. Epidemiol. 180, 1036–1046 

55  Presanis, A.M. et al. (2009) The severity of pandemic H1N1 influenza in the United 
States, from April to July 2009: a Bayesian analysis. PLoS Med. 6, e1000207 

56  Fraser, C. et al. (2011) Influenza transmission in households during the 1918 
pandemic. Am. J. Epidemiol. 174, 505–514 

57  Longini, I.M., Jr and Koopman, J.S. (1982) Household and community transmission 
parameters from final distributions of infections in households. Biometrics 38, 115–126 

58  Bellan, S.E. et al. (2012) How to Make Epidemiological Training Infectious. PLoS Biol. 
10, e1001295 

59  Bjørnstad, O.N. (2018) Epidemics: Models and Data with R, Springer. 
60  Salathé, M. (2018) Digital epidemiology: what is it, and where is it going? Life Sci Soc 



 

Policy 14, 1 
61  Faria, N.R. et al. (2017) Establishment and cryptic transmission of Zika virus in Brazil 

and the Americas. Nature 546, 406–410 
62  Dudas, G. et al. (2017) Virus genomes reveal factors that spread and sustained the 

Ebola epidemic. Nature 544, 309–315 
63  Mossong, J. et al. (2008) Social contacts and mixing patterns relevant to the spread of 

infectious diseases. PLoS Med. 5, e74 
64  Funk, S. et al. (2015) Nine challenges in incorporating the dynamics of behaviour in 

infectious diseases models. Epidemics 10, 21–25 
65  Ionides, E.L. et al. (2006) Inference for nonlinear dynamical systems. Proc. Natl. Acad. 

Sci. U. S. A. 103, 18438–18443 
66  King, A.A. et al. (2008) Inapparent infections and cholera dynamics. Nature 454, 877–

880 
67  Dureau, J. et al. (2013) Capturing the time-varying drivers of an epidemic using 

stochastic dynamical systems. Biostatistics 14, 541–555 

  



 

Box 1: Compartmental models - the Susceptible-Infectious-Recovered (SIR) model  
 
Compartmental models are some of the most established models in the field of infectious disease epidemiology. 
In one of the simplest versions, the Susceptible-Infectious-Recovered (SIR) model, the population is divided up 
into susceptible (𝑆), infectious (𝐼), and recovered (𝑅; i.e. immune) individuals, and can transit between these 

compartments over time. A susceptible individual becomes infected at a rate 𝛽 𝐼/𝑁 and remains infectious for a 

duration 1/𝛾 before recovering and acquiring immunity. At the beginning of an epidemic, the number of 
infectious individuals increases exponentially. As susceptible individuals start to deplete and infectious 
individuals recover, transmission diminishes and the outbreak reaches its peak before dying out completely (A). 
This model is valid for the time scale of a typical epidemic, yet does not capture replenishment of susceptible 
populations through, for example, birth and migration processes. This is an important underlying driver of 
recurrence of epidemics and may, in particular in childhood diseases, result in periodic outbreaks (B), although 
at an even longer time scale the model may result in a positive steady state of the number of infected. While the 

simplest versions of the SIR-model assume the transmission parameter 𝛽 to be constant over the course of an 
epidemic, periodic changes thereof could be another explanation for observed periodicity in infection dynamics. 

In (C) we show the impact of a seasonally forced 𝛽 (for instance as a result of climatic variations) on transmission 
dynamics. Interventions, for instance aimed at reducing contact rates between people (i.e. social isolation) could 
further reduce the transmission parameter and halt  

epidemics from following its natural course. Depending 
on the characteristics of the pathogen and its 
transmission, other compartments can be added to the 
model, such as an “Exposed” compartment (SEIR 
model) to account for an incubation period that 
determines the time individuals are infected but not yet 
infectious. Further, departures from simplifying 
assumptions such as heterogeneous mixing (i.e., each 
individual has an equal probability of being in contact 
with any other individual in a population) can be 
implemented depending on the context and transmission 
system.  
Statistical methods to estimate the parameters of these 
models have greatly improved in the last 20 years. While 
earlier approaches such as the time-series SIR (TSIR) 
model imposed some relatively strong constraints about 
the structure of the data and the underlying transmission 
model (e.g. the time step of the data had to be equal to 
the generation time of the pathogen) [40], these 
constraints were relaxed in subsequent developments, 
allowing more flexibility and model complexity [65–
67].     
 

 Figure I: Schematics of compartmental models       
and population dynamics 

 
 

  



 

Glossary 

Case fatality ratio: Proportion of death among infected individuals. 

Force of infection: Per capita rate of infection in susceptible individuals. 

Generation time: Time delay between infection in a case and in the people they infect. 

Reproduction number: Mean number of persons infected by a case. 

Serial interval: Time delay between symptom onset in a case and in the persons they infect. 

Sero-catalytic models: A class of model used to estimate the annual rate of seroconversion 

from the age-profile of seroprevalence. 

Transmission tree: A description of the individual events of transmission between infected 

cases. 

  



 

Highlights  

• Numerous data types can be used to estimate the transmission potential of a 

pathogen including descriptions of the chains of transmission, human cluster sizes, sources 

of infection of a subset of cases, epidemic curves. 

• An important agenda in public health is understanding the impact of control methods. 

However, the dynamic nature of epidemics makes this task challenging since for example a 

reduction in case counts following the implementation of an intervention could simply be due 

to the depletion of susceptible individuals in the population. Models can disentangle the 

natural course of outbreaks from the effect of external factors.  

• In the absence of reliable surveillance data, models can reconstruct epidemic history 

by combining age-specific seroprevalence data with understanding of the natural history of 

infection.   

• Mechanisms of immunity are hard to observe on an individual level, yet affect 

population-level dynamics. Models can tease out such signatures.  

• When a lot of infections are unobserved and the most severe ones are more likely to 

be detected by surveillance, morbidity and mortality can be difficult to estimate. In these 

situations, models can be used to jointly analyze different surveillance sources, with a view 

to better account for unobserved infections and obtain more reliable estimates of morbidity 

and mortality. 

  



 

Outstanding questions  

● How can we reduce the gap between methods development and implementation in the 

field, to make tools more accessible for the wider public health community?  

● How can we minimize delays between data collection, analysis, and communication of 

findings to inform outbreak responses in time? 

● How can we integrate data from different sources (social media data, viral genetic 

sequences) to take advantage of their complementarity? 

 

 

 
  



 

 

 

Figure 1. Approaches to estimate the reproduction number. When chains of transmission 

are available, the reproduction number is obtained by counting directly the number of 

secondary infections (A). The reproduction number can also be estimated from the 

distribution of the sizes of clusters of human cases (B). Epidemic time series are also 

informative. At the start of an epidemic, the number of cases grows exponentially and the 

growth rate r can be used to estimate of the reproduction number (C). During the course of 

an epidemic, variations of the reproduction number can also be estimated (D).  

  



 

 

 

Figure 2. Estimating historical patterns of infection from age-stratified serological 

surveys.  The panels show how the history of circulation of a pathogen (A) is expected 

to impact age-stratified seroprevalence when immunity is life-long (B) or temporary (C). 

In the red scenario, an epidemic infecting 30% of the population occurred 15 years ago. If 

immunity is life-long, the seroprevalence is expected to be 30% among those aged ≥15 

years old but null among younger individuals (B). In the blue scenario, low-level 

continuous circulation of the pathogen (A) is expected to lead to a slow increase of 

seroprevalence with age (B). In the case of waning immunity, a plateau in seroprevalence 



 

for older individuals may be expected (C). Catalytic models were developed to reconstruct 

the history of circulation of the pathogen from serological surveys. The force of infection 

is the annual probability a susceptible individual gets infected.  

  



 

 

Figure 3. Pyramide of severity.  The proportion of symptomatic individuals that die can be 

estimated from the conditional probabilities of the different steps a symptomatic case has to 

go through before dying (e.g. probability of symptomatic being medical attended, medical 

attendance to hospitalization, hospitalization to death) that can be derived from different data 

sources [55]. 

 

 

 

  

 

  

 

  

 

  

 

 

 

 

  

 

 

 


