C. Paupy, H. Delatte, and L. Bagny, Aedes albopictus, an arbovirus vector: from the darkness to the light, Microbes Infect, vol.11, pp.1177-1185, 2009.

M. Bonizzoni, G. Gasperi, and X. Chen, The invasive mosquito species Aedes albopictus: current knowledge and future perspectives, Trends Parasitol, vol.29, pp.460-468, 2013.

C. Caminade, J. M. Medlock, and E. Ducheyne, Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios, J R Soc Interface, vol.9, pp.2708-2717, 2012.

M. Q. Benedict, R. S. Levine, and W. A. Hawley, Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis, vol.7, pp.76-85, 2007.

L. P. Lounibos, Invasions by insect vectors of human disease, Annu Rev Entomol, vol.47, pp.233-266, 2002.

W. A. Hawley, The biology of Aedes albopictus, J Am Mosq Control Assoc Suppl, vol.1, pp.1-39, 1988.

J. Adhami and P. Reiter, Introduction and establishment of Aedes (Stegomyia) albopictus skuse (Diptera: Culicidae) in Albania, J Am Mosq Control Assoc, vol.14, pp.340-343, 1998.

D. Sprenger and T. Wuithiranyagool, The discovery and distribution of Aedes albopictus in Harris County, Texas. J Am Mosq Control Assoc, vol.2, pp.217-219, 1986.

R. Consoli and . Or, Principais mosquitos de importância sanitária no Brasil, Rio de Janeiro. Editora FIOCRUZ, vol.228, 1994.

A. J. Cornel and R. H. Hunt, Aedes albopictus in Africa? First records of live specimens in imported tires in Cape Town, J Am Mosq Control Assoc, vol.7, pp.107-108, 1991.

C. Goubert, G. Minard, and C. Vieira, Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases, Heredity (Edinb), vol.117, pp.125-134, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02012374

H. Jackson, D. Strubbe, and S. Tollington, Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade

, Mol Ecol, vol.24, pp.4269-4285, 2015.

J. R. Powell and W. J. Tabachnick, History of domestication and spread of Aedes aegypti-a review, Mem Inst Oswaldo Cruz, vol.108, issue.1, pp.11-17, 2013.

A. J. Maynard, L. Ambrose, and R. D. Cooper, Tiger on the prowl: invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus (Skuse 1894) in the Indo-Pacific, PLoS Negl Trop Dis, vol.11, p.5546, 2017.

P. Kotsakiozi, J. B. Richardson, and V. Pichler, Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion, Ecol Evol, vol.7, pp.10143-10157, 2017.

M. Manni, L. M. Gomulski, and N. Aketarawong, Molecular markers for analyses of intraspecific genetic diversity in the Asian tiger mosquito, Aedes albopictus, Parasit Vectors, vol.8, p.188, 2015.

M. Manni, C. R. Guglielmino, and F. Scolari, Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus, PLoS Negl Trop Dis, vol.11, p.5332, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01468191

L. Mousson, C. Dauga, and T. Garrigues, Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations, Genet Res, vol.86, pp.1-11, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-01698720

L. D. Kramer and G. D. Ebel, Advances in virus research, Adv Virus Res, vol.60, pp.187-232, 2003.

K. Zouache, A. Fontaine, and A. Vega-rua, Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential, Proc Biol Sci, vol.281, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01680228

S. Crochu, Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes, J Gen Virol, vol.85, pp.1971-1980, 2004.

A. Katzourakis and R. J. Gifford, Endogenous viral elements in animal genomes, PLoS Genet, vol.6, p.1001191, 2010.

P. Fort, A. Albertini, and A. Van-hua, Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality, Mol Biol Evol, vol.29, pp.381-390, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00649757

U. Palatini, P. Miesen, and R. Carballar-lejarazu, Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus, BMC Genomics, vol.18, p.512, 2017.

Z. J. Whitfield, P. T. Dolan, and M. Kunitomi, The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome

, Curr Biol, vol.27, pp.3511-3519, 2017.

J. Brennecke, A. A. Aravin, and A. Stark, Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, vol.128, pp.1089-1103, 2007.

A. Pelisson, E. Sarot, and G. Payen-groschene, A novel repeat-associated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary, J Virol, vol.81, pp.1951-1960, 2007.

K. Saito, K. M. Nishida, and T. Mori, Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome

, Genes Dev, vol.20, pp.2214-2222, 2006.

V. V. Vagin, A. Sigova, and C. Li, A distinct small RNA pathway silences selfish genetic elements in the germline, Science, vol.313, pp.320-324, 2006.

V. Zanni, A. Eymery, and M. Coiffet, Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters, Proc Natl Acad Sci U S A, vol.110, pp.19842-19847, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189713

J. A. Frank and C. Feschotte, Co-option of endogenous viral sequences for host cell function, Curr Opin Virol, vol.25, pp.81-89, 2017.

A. Aswad and A. Katzourakis, Paleovirology and virally derived immunity, Trends Ecol Evol, vol.27, pp.627-636, 2012.

A. Katzourakis, Paleovirology: inferring viral evolution from host genome sequence data, Philos Trans R Soc Lond B Biol Sci, vol.368, 2013.

D. Musso, A. J. Rodriguez-morales, and J. E. Levi, Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America, Lancet Infect Dis, vol.18, issue.18, p.30269, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01935340

C. Fritzell, D. Rousset, and A. Adde, Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: A scoping review, PLoS Negl Trop Dis, vol.12, p.6533, 2018.

X. G. Chen, X. Jiang, and J. Gu, Genome sequence of the Asian tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution, Proc Natl Acad Sci U S A, vol.112, pp.5907-5915, 2015.

, GENETIX 4.05 Logiciel Sous Windows TM Pour la Génétique des Populations, 1996.

, FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3), 2001.

L. Excoffier and H. E. Lischer, Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol Ecol Resour, vol.10, pp.564-567, 2010.

R. Peakall and P. E. Smouse, Genalex 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, vol.28, pp.2537-2539, 2012.

M. Vazeille, K. Zouache, and A. Vega-rúa, Importance of mosquito "quasispecies" in selecting an epidemic arthropod-borne virus, Sci Rep, vol.6, p.29564, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01457825

J. K. Pritchard, M. Stephens, and P. Donnelly, Inference of population structure using multilocus genotype data, Genetics, vol.155, pp.945-959, 2000.

G. Evanno, S. Regnaut, and J. Goudet, Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol Ecol, vol.14, 2005.

N. Rosenberg, DISTRUCT: a program for the graphical display of population structure, Mol Ecol Notes, vol.4, pp.137-138, 2004.

S. Rozen and H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, Methods Mol Biol, vol.132, pp.365-386, 2000.

C. Ricotta and J. Podaní, On some properties of the BrayCurtis dissimilarity and their ecological meaning, Ecol Complex, vol.31, pp.201-205, 2017.

A. Vega-rua, K. Zouache, and R. Girod, High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus, J Virol, vol.88, pp.6294-6306, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01464435

R. C. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, p.113, 2004.

. Paup*, Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland (MA), 1998.

M. Vazeille-falcoz, L. Mousson, and F. Rodhain, Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia, Am J Trop Med Hyg, vol.60, pp.292-299, 1999.
URL : https://hal.archives-ouvertes.fr/pasteur-01715908

I. Schuffenecker, I. Iteman, and A. Michault, Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak, PLoS Med, vol.3, p.263, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-01659363

F. Amraoui, B. Ayed, W. Madec, and Y. , Potential of Aedes albopictus to cause the emergence of arboviruses in Morocco, PLoS Negl Trop Dis, vol.13, p.6997, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02042785

P. Liu, Y. Dong, and J. Gu, Developmental piRNA profiles of the invasive vector mosquito Aedes albopictus, Parasit Vectors, vol.9, p.524, 2016.

K. E. Olson and M. Bonizzoni, Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more?, Curr Opin Insect Sci, vol.22, pp.45-53, 2017.

V. Houe, M. Bonizzoni, and A. B. Failloux, Endogenous nonretroviral elements in genomes of Aedes mosquitoes and vector competence, Emerg Microbes Infect, vol.8, pp.542-555, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02089366

Y. C. Lee and C. H. Langley, Long-term and short-term evolutionary impacts of transposable elements on Drosophila, Genetics, vol.192, pp.1411-1432, 2012.

D. Vermaak, S. Henikoff, and H. S. Malik, Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila

, PLoS Genet, vol.1, pp.96-108, 2005.

S. H. Lewis, K. A. Quarles, and Y. Yang, Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements, Nat Ecol Evol, vol.2, pp.174-181, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01657238

A. Heger and C. P. Ponting, Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes

, Genome Res, vol.17, pp.1837-1849, 2007.

D. J. Obbard, K. H. Gordon, and A. H. Buck, The evolution of RNAi as a defence against viruses and transposable elements, Philos Trans R Soc Lond B Biol Sci, vol.364, pp.99-115, 2009.

B. Kolaczkowski, D. N. Hupalo, and A. D. Kern, Recurrent adaptation in RNA interference genes across the Drosophila phylogeny, Mol Biol Evol, vol.28, pp.1033-1042, 2011.

M. Yi, F. Chen, and M. Luo, Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity, Genome Biol Evol, vol.6, pp.1393-1407, 2014.

A. Simkin, A. Wong, and Y. P. Poh, Recurrent and recent selective sweeps in the piRNA pathway, Evolution, vol.67, pp.1081-1090, 2013.

D. Roiz, A. Vazquez, and M. P. Seco, Detection of novel insect flavivirus sequences integrated in Aedes albopictus (Diptera: Culicidae) in Northern Italy, Virol J, vol.6, p.93, 2009.

E. Pischedda, F. Scolari, and F. Valerio, Insights into an unexplored component of the mosquito repeatome: distribution and variability of viral sequences integrated into the genome of the arboviral vector Aedes albopictus, Front Genet, vol.10, p.93, 2019.

M. W. Yap, E. Colbeck, and S. A. Ellis, Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses, PLoS Pathog, vol.10, p.1003968, 2014.

J. Hobson-peters, A. Yam, and J. Lu, A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells, PLoS One, vol.8, 2013.

R. Kuwata, H. Isawa, and K. Hoshino, Analysis of mosquito-borne flavivirus superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) cells persistently infected with Culex Flavivirus (Flaviviridae), J Med Entomol, vol.52, pp.222-229, 2015.

Y. Suzuki, L. Frangeul, and L. B. Dickson, Uncovering the repertoire of endogenous flaviviral elements in Aedes mosquito genomes, J Virol, vol.91, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636504

B. G. Bolling, S. C. Weaver, and R. B. Tesh, Insect-specific virus discovery: significance for the arbovirus community, Viruses, vol.7, pp.4911-4928, 2015.