S. B. , S. S. , Y. K. , M. F. , S. B. et al., Writing -review & editing, C.Z. Funding This work was supported by the Agence Nationale de la Recherche (ANR 16 CE 16 0019 01 NEUROTUNN) and the EU Joint Programme on Neurodegenerative Diseases

S. Z. , is supported by Ph.D. fellowships from the China Scholarship Council (201306170046) and by an Institute Carnot fellowship, S.B. is supported by JPND-NeuTARGETs-ANR, 201602.

S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes-from electrical signals to organelle transfer, J. Cell Sci, vol.125, pp.1089-1098, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00716392

S. Abounit, E. Delage, and C. Zurzolo, Identification and characterization of tunneling nanotubes for intercellular trafficking, Curr. Protoc. Cell Biol, vol.67, pp.1-21, 2015.

S. Abounit, L. Bousset, F. Loria, S. Zhu, F. De-chaumont et al., Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes, EMBO J, vol.35, pp.2120-2138, 2016.

S. Abounit, J. W. Wu, K. Duff, G. S. Victoria, and C. Zurzolo, Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases, Prion, vol.10, pp.344-351, 2016.

P. D. Arkwright, F. Luchetti, J. Tour, C. Roberts, R. Ayub et al., Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes, Cell Res, vol.20, pp.72-88, 2010.

M. W. Austefjord, H. Gerdes, and X. Wang, Tunneling nanotubes: Diversity in morphology and structure, Commun. Integr. Biol, vol.7, p.27934, 2014.

A. Biran, M. Perelmutter, H. Gal, D. G. Burton, Y. Ovadya et al., Senescent cells communicate via intercellular protein transfer, Genes Dev, vol.29, pp.791-802, 2015.

E. A. Bishai, G. S. Sidhu, W. Li, J. Dhillon, A. B. Bohil et al., Myosin-X facilitates Shigella-induced membrane protrusions and cell-to-cell spread, Cell. Microbiol, vol.15, pp.353-367, 2013.

C. Boehlke, M. Bashkurov, A. Buescher, T. Krick, A. John et al., Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels, J. Cell Sci, vol.123, pp.1460-1467, 2010.

A. B. Bohil, B. W. Robertson, and R. E. Cheney, Myosin-X is a molecular motor that functions in filopodia formation, Proc. Natl. Acad. Sci. USA, vol.103, pp.12411-12416, 2006.

J. J. Bravo-cordero, M. Cordani, S. F. Soriano, B. D?éz, C. Munõz-agudo et al., A novel high-content analysis tool reveals Rab8-driven cytoskeletal reorganization through Rho GTPases, calpain and MT1-MMP, J. Cell Sci, vol.129, pp.1734-1749, 2016.

N. V. Bukoreshtliev, X. Wang, E. Hodneland, S. Gurke, J. F. Barroso et al., Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells, FEBS Lett, vol.583, pp.1481-1488, 2009.

A. Burtey, M. Wagner, E. Hodneland, K. O. Skaftnesmo, J. Schoelermann et al., Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes, FASEB J, vol.29, pp.4695-4712, 2015.

C. C. Campa and E. Hirsch, Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking, Adv. Biol. Regul, vol.63, pp.132-139, 2017.

K. S. Carroll, J. Hanna, I. Simon, J. Krise, P. Barbero et al., Role of Rab9 GTPase in facilitating receptor recruitment by TIP47, Science, vol.292, pp.1373-1376, 2001.

A. Castillo-romero, G. Leon-avila, C. C. Wang, A. Perez-rangel, M. Camacho-nuez et al., Rab11 and actin cytoskeleton participate in Giardia lamblia encystation, guiding the specific vesicles to the cyst wall, PLoS Negl. Trop, 2010.

W. Chen, Y. Feng, D. Y. Chen, and A. Wandinger-ness, Rab11 is required for trans-Golgi network to plasma membrane transport and a preferential target for GDP dissociation inhibitor, Mol. Biol. Cell, vol.9, pp.3241-3257, 1998.

D. Cox, D. J. Lee, B. M. Dale, J. Calafat, and S. Greenberg, A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis, Proc. Natl. Acad. Sci. USA, vol.97, pp.680-685, 2000.

D. M. Davis and S. Sowinski, Membrane nanotubes: dynamic longdistance connections between animal cells, Nat. Rev. Mol. Cell Biol, vol.9, pp.431-436, 2008.

E. Delage, D. C. Cervantes, E. Penard, C. Schmitt, S. Syan et al., Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes, Sci. Rep, vol.6, p.39632, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01511571

W. J. Deng, Y. Y. Wang, L. Gu, B. A. Duan, J. Cui et al., MICAL1 controls cell invasive phenotype via regulating oxidative stress in breast cancer cells, BMC Cancer, vol.16, p.489, 2016.

Y. Diekmann, E. Seixas, M. Gouw, F. Tavares-cadete, M. C. Seabra et al., Thousands of rab GTPases for the cell biologist, PLoS Comput. Biol, vol.7, p.1002217, 2011.

A. Disanza, S. Bisi, M. Winterhoff, F. Milanesi, D. S. Ushakov et al., , 2013.

, CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP, EMBO J, vol.32, pp.2735-2750

M. L. Dustin, A. K. Chakraborty, and A. S. Shaw, Understanding the structure and function of the immunological synapse, Cold Spring Harb. Perspect Biol, vol.2, 2010.

R. Eva, E. Dassie, P. T. Caswell, G. Dick, C. Ffrench-constant et al., Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells, J. Neurosci, vol.30, pp.11654-11669, 2010.

F. Finetti, L. Patrussi, D. Galgano, C. Cassioli, G. Perinetti et al., The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse, J. Cell Sci, vol.128, pp.2541-2552, 2015.

J. A. Follit, L. Li, Y. Vucica, and G. J. Pazour, The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence, J. Cell Biol, vol.188, pp.21-28, 2010.

S. Fremont, H. Hammich, J. Bai, H. Wioland, K. Klinkert et al., , 2017.

, Oxidation of F-actin controls the terminal steps of cytokinesis, Nat. Commun, vol.8, pp.1-16

M. Fukuda, Regulation of secretory vesicle traffic by Rab small GTPases, Cell. Mol. Life Sci, vol.65, pp.2801-2813, 2008.

K. Furusawa, A. Asada, P. Urrutia, C. Gonzalez-billault, M. Fukuda et al., Cdk5 regulation of the GRAB-mediated Rab8-Rab11 cascade in axon outgrowth, J. Neurosci, vol.37, pp.790-806, 2017.

K. Gousset, E. Schiff, C. Langevin, Z. Marijanovic, A. Caputo et al., , 2009.

, Prions hijack tunnelling nanotubes for intercellular spread, Nat. Cell Biol, vol.11, pp.328-336

K. Gousset, L. Marzo, P. Commere, and C. Zurzolo, Myo10 is a key regulator of TNT formation in neuronal cells, J. Cell Sci, vol.126, pp.4424-4435, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874699

S. J. Hanna, K. Mccoy-simandle, V. Miskolci, P. Guo, M. Cammer et al., The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis, Sci. Rep, vol.7, p.8547, 2017.

K. Hase, S. Kimura, H. Takatsu, M. Ohmae, S. Kawano et al., M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex, Nat. Cell Biol, vol.11, pp.1427-1432, 2009.

K. Hattula, J. Furuhjelm, A. Arffman, and J. Pera?nen, A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport, Mol. Biol. Cell, vol.13, pp.3268-3280, 2002.

K. Hattula, J. Furuhjelm, J. Tikkanen, K. Tanhuanpaa, P. Laakkonen et al., Characterization of the Rab8-specific membrane traffic route linked to protrusion formation, J. Cell Sci, vol.119, pp.4866-4877, 2006.

H. N. Higgs and T. D. Pollard, Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins, J. Biol. Chem, vol.274, pp.32531-32534, 1999.

Y. Homma and M. Fukuda, Rabin8 regulates neurite outgrowth in both GEF activity-dependent and -independent manners, Mol. Biol. Cell, vol.27, pp.2107-2118, 2016.

A. H. Hutagalung and P. J. Novick, Role of Rab GTPases in membrane traffic and cell physiology, Physiol. Rev, vol.91, pp.119-149, 2011.

M. Ikeda, O. Ishida, T. Hinoi, S. Kishida, and A. Kikuchi, Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral, J. Biol. Chem, vol.273, pp.814-821, 1998.

M. Ishida, N. Ohbayashi, Y. Maruta, Y. Ebata, and M. Fukuda, Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes, J. Cell Sci, vol.125, pp.5177-5187, 2012.

I. Kadiu and H. E. Gendelman, Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and golgi network, J. Proteome Res, vol.10, pp.3225-3238, 2011.

S. Kimura, M. Yamashita, M. Yamakami-kimura, Y. Sato, A. Yamagata et al., Distinct roles for the N-and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation, Sci. Rep, vol.6, p.33548, 2016.

T. H. Klo?pper, N. Kienle, D. Fasshauer, and S. Munro, Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis, BMC Biol, vol.10, p.71, 2012.

H. Kobayashi, K. Etoh, N. Ohbayashi, and M. Fukuda, Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth, Biol. Open, vol.3, pp.803-814, 2014.

L. Marzo, K. Gousset, and C. Zurzolo, Multifaceted roles of tunneling nanotubes in intercellular communication, Front. Physiol, vol.3, p.72, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00716379

T. Matsui and M. Fukuda, Small GTPase Rab12 regulates transferrin receptor degradation: Implications for a novel membrane trafficking pathway from recycling endosomes to lysosomes, Cell Logist, vol.1, pp.155-158, 2011.

M. V. Nachury, A. V. Loktev, Q. Zhang, C. J. Westlake, J. Pera?nen et al., A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis, Cell, vol.129, pp.1201-1213, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00183618

E. Nielsen, S. Christoforidis, S. Uttenweiler-joseph, M. Miaczynska, F. Dewitte et al., Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain, J. Cell Biol, vol.151, pp.601-612, 2000.

B. Onfelt, S. Nedvetzki, R. K. Benninger, M. A. Purbhoo, S. Sowinski et al., Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria, J. Immunol, vol.177, pp.8476-8483, 2006.

L. Patrussi and C. T. Baldari, The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: from a conserved pathway to diverse cellular structures, Small GTPases, vol.7, pp.16-20, 2016.

J. Pera?nen, Rab8 GTPase as a regulator of cell shape, Cytoskeleton (Hoboken), vol.68, pp.527-539, 2011.

J. Rahajeng, S. S. Giridharan, B. S. Cai, N. Naslavsky, and S. Caplan, MICAL-L1 is a tubular endosomal membrane hub that connects Rab35 and Arf6 with Rab8a, Traffic, vol.13, pp.82-93, 2012.

J. S. Ramalho, R. Anders, G. B. Jaissle, M. W. Seeliger, C. Huxley et al., Rapid degradation of dominant-negative Rab27 proteins in vivo precludes their use in transgenic mouse models, BMC Cell Biol, vol.3, p.26, 2002.

D. Ramel, X. Wang, C. Laflamme, D. J. Montell, and G. Emery, Rab11 regulates cell-cell communication during collective cell movements, Nat. Cell Biol, vol.15, pp.317-324, 2013.

D. Reichert, J. Scheinpflug, J. Karbanova, D. Freund, M. Bornhauser et al., Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells, Exp. Hematol, vol.44, pp.1092-1112, 2016.

J. T. Roland, A. K. Kenworthy, J. Peranen, S. Caplan, and J. R. Goldenring, Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3, Mol. Biol. Cell, vol.18, pp.2828-2837, 2007.

J. T. Roland, D. M. Bryant, A. Datta, A. Itzen, K. E. Mostov et al., Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization, Proc. Natl. Acad. Sci. USA, vol.108, pp.2789-2794, 2011.

R. K. Rowe, J. W. Suszko, and A. Pekosz, Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells, Virology, vol.382, pp.239-249, 2008.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes, Nanotubular highways for intercellular organelle transport, Science, vol.303, pp.1007-1010, 2004.

V. Sanchez, N. Villalba, L. Fiore, C. Luzzani, S. Miriuka et al., Characterization of tunneling nanotubes in Wharton's jelly mesenchymal stem cells. an intercellular exchange of components between neighboring cells, Stem Cell Rev, vol.13, pp.491-498, 2017.

T. Sato, T. Iwano, M. Kunii, S. Matsuda, R. Mizuguchi et al., Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis, J. Cell Sci, vol.127, pp.422-431, 2014.

C. Schafer, S. Born, C. Mohl, S. Houben, N. Kirchgessner et al., The key feature for early migratory processes Dependence of adhesion, actin bundles, force generation and transmission on filopodia, Cell Adh. Migr, vol.4, pp.215-225, 2010.

M. Sharma, S. S. Giridharan, J. Rahajeng, N. Naslavsky, and S. Caplan, MICAL-L1 links EHD1 to tubular recycling endosomes and regulates receptor recycling, Mol. Biol. Cell, vol.20, pp.5181-5194, 2009.

N. M. Sherer and W. Mothes, Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis, Trends Cell Biol, vol.18, pp.414-420, 2008.

H. Shin, M. Hayashi, S. Christoforidis, S. Lacas-gervais, S. Hoepfner et al., An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway, J. Cell Biol, vol.170, pp.607-618, 2005.

M. Shirane and K. I. Nakayama, Protrudin induces neurite formation by directional membrane trafficking, Science, vol.314, pp.818-821, 2006.

A. Simonsen, R. Lippe, S. Christoforidis, J. Gaullier, A. Brech et al., EEA1 links PI(3)K function to Rab5 regulation of endosome fusion, Nature, vol.394, pp.494-498, 1998.

S. Sowinski, C. Jolly, O. Berninghausen, M. A. Purbhoo, A. Chauveau et al., Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nat. Cell Biol, vol.10, pp.211-219, 2008.

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nat. Rev. Mol. Cell Biol, vol.10, pp.513-525, 2009.

S. Takahashi, K. Kubo, S. Waguri, A. Yabashi, H. Shin et al., Rab11 regulates exocytosis of recycling vesicles at the plasma membrane, J. Cell Sci, vol.125, pp.4049-4057, 2012.

T. Takano, M. Tomomura, N. Yoshioka, K. Tsutsumi, Y. Terasawa et al., LMTK1/ AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner, J. Neurosci, vol.32, pp.6587-6599, 2012.

T. Tsuboi and M. Fukuda, Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells, J. Cell Sci, vol.119, pp.2196-2203, 2006.

A. W. Van-weert, H. J. Geuze, B. Groothuis, and W. Stoorvogel, Primaquine interferes with membrane recycling from endosomes to the plasma membrane through a direct interaction with endosomes which does not involve neutralisation of endosomal pH nor osmotic swelling of endosomes, Eur. J. Cell Biol, vol.79, pp.394-399, 2000.

G. S. Victoria and C. Zurzolo, The spread of prion-like proteins by lysosomes and tunneling nanotubes: implications for neurodegenerative diseases, J. Cell Biol, vol.216, pp.2633-2644, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01855453

D. Villarroel-campos, F. C. Bronfman, and C. Gonzalez-billault, Rab GTPase signaling in neurite outgrowth and axon specification, Cytoskeleton (Hoboken), vol.73, pp.498-507, 2016.

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation, Cell Death Differ, vol.18, pp.732-742, 2011.

J. Wang, J. Ren, B. Wu, S. Feng, G. Cai et al., Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling, Proc. Natl. Acad. Sci. USA, vol.112, pp.148-153, 2015.

C. J. Westlake, L. M. Baye, M. V. Nachury, K. J. Wright, K. E. Ervin et al., Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome, Proc. Natl. Acad. Sci. USA, vol.108, pp.2759-2764, 2011.

X. S. Wu, K. Rao, H. Zhang, F. Wang, J. R. Sellers et al., Identification of an organelle receptor for myosin-Va, Nat. Cell Biol, vol.4, pp.271-278, 2002.

S. Y. Wu, S. Q. Mehta, F. Pichaud, H. J. Bellen, and F. A. Quiocho, Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo, Nat. Struct. Mol. Biol, vol.12, pp.879-885, 2005.

X. M. Zhang, B. Walsh, C. A. Mitchell, and T. Rowe, TBC domain family, member 15 is a novel mammalian Rab GTPase-activating protein with substrate preference for Rab7, Biochem. Biophyl. Res. Commun, vol.335, pp.154-161, 2005.

Y. T. Zhao, J. L. Liu, C. S. Yang, B. R. Capraro, T. Baumgart et al., , 2013.

, Exo70 generates membrane curvature for morphogenesis and cell migration

, Dev. Cell, vol.26, pp.266-278

Y. Zhen and H. Stenmark, Cellular functions of Rab GTPases at a glance, J. Cell Sci, vol.128, pp.3171-3176, 2015.

H. Zhu, C. Xue, X. Xu, Y. Guo, X. Li et al., Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes, vol.7, p.2523, 2016.

S. Zhu, S. Abounit, C. Korth, and C. Zurzolo, Transfer of disrupted-inschizophrenia 1 aggregates between neuronal-like cells occurs in tunnelling nanotubes and is promoted by dopamine, Open Biol, vol.7, p.160328, 2017.