A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes, Nanotubular highways for intercellular organelle transport, Science, vol.303, pp.1007-1010, 2004.

S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes-from electrical signals to organelle transfer, J. Cell Sci, vol.125, pp.1089-1098, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00716392

M. W. Austefjord, H. H. Gerdes, and X. Wang, Tunneling nanotubes: Diversity in morphology and structure, Commun. Integr. Biol, vol.7, p.27934, 2014.

M. L. Vignais, A. Caicedo, J. M. Brondello, and C. Jorgensen, Cell connections by tunneling nanotubes: Effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy, Stem Cells Int, p.6917941, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01759757

J. Ariazi, Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions, Front. Mol. Neurosci, vol.10, p.333, 2017.

M. Koyanagi, R. P. Brandes, J. Haendeler, A. M. Zeiher, and S. Dimmeler, Cellto-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes?, Circ. Res, vol.96, pp.1039-1041, 2005.

S. Abounit, J. W. Wu, K. Duff, G. S. Victoria, and C. Zurzolo, Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases, Prion, vol.10, pp.344-351, 2016.

H. R. Chinnery, E. Pearlman, and P. G. Mcmenamin, Cutting edge: Membrane nanotubes in vivo: a feature of MHC class II + cells in the mouse cornea, J. Immunol, vol.180, pp.5779-5783, 2008.

E. Lou, Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma, PLoS ONE, vol.7, p.33093, 2012.

M. Osswald, Brain tumour cells interconnect to a functional and resistant network, Nature, vol.528, pp.93-98, 2015.

M. Baker, How the Internet of cells has biologists buzzing, Nature, vol.549, pp.322-324, 2017.

P. K. Mattila and P. Lappalainen, Filopodia: molecular architecture and cellular functions, Nat. Rev. Mol. Cell Biol, vol.9, pp.446-454, 2008.

C. Gutierrez-vazquez, C. Villarroya-beltri, M. Mittelbrunn, and F. Sanchezmadrid, Transfer of extracellular vesicles during immune cell-cell interactions, Immunol. Rev, vol.251, pp.125-142, 2013.

M. Nawaz and F. Fatima, Extracellular vesicles, tunneling nanotubes, and cellular interplay: Synergies and missing links, Front. Mol. Biosci, vol.4, p.50, 2017.

S. Sowinski, Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nat. Cell Biol, vol.10, pp.211-219, 2008.

A. Kumar, Influenza virus exploits tunneling nanotubes for cell-to-cell spread, Sci. Rep, vol.7, p.40360, 2017.

J. Lu, Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells, Oncotarget, vol.8, pp.15539-15552, 2017.

G. Okafo, L. Prevedel, and E. Eugenin, Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread, Sci. Rep, vol.7, p.16660, 2017.

E. Delage, Differential identity of filopodia and tunneling nanotubes revealed by the opposite functions of actin regulatory complexes, Sci. Rep, vol.6, p.39632, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01511571

G. Gallo, Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis, Int. Rev. Cell. Mol. Biol, vol.301, pp.95-156, 2013.

G. Jacquemet, H. Hamidi, and J. Ivaska, Filopodia in cell adhesion, 3D migration and cancer cell invasion, Curr. Opin. Cell Biol, vol.36, pp.23-31, 2015.

K. Gousset, Prions hijack tunnelling nanotubes for intercellular spread, Nat. Cell Biol, vol.11, pp.328-336, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00368712

S. Abounit, E. Delage, and C. Zurzolo, Identification and characterization of tunneling nanotubes for intercellular trafficking, Curr. Protoc. Cell Biol, vol.67, pp.11-12, 2015.

I. F. Smith, J. Shuai, and I. Parker, Active generation and propagation of Ca2 + signals within tunneling membrane nanotubes, Biophys. J, vol.100, pp.37-39, 2011.

B. V. Dieriks, alpha-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson's disease patients, Sci. Rep, vol.7, p.42984, 2017.

M. R. Schultz and . Virchow, Emerg. Infect. Dis, vol.14, pp.1480-1481, 2008.

K. Gousset, L. Marzo, P. H. Commere, and C. Zurzolo, Myo10 is a key regulator of TNT formation in neuronal cells, J. Cell Sci, vol.126, pp.4424-4435, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874699

N. M. Sherer, Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission, Nat. Cell Biol, vol.9, pp.310-315, 2007.

I. Patla, Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography, Nat. Cell Biol, vol.12, pp.909-915, 2010.

F. Korobova and T. Svitkina, Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells, Mol. Biol. Cell, vol.19, pp.1561-1574, 2008.

M. Barzik, L. M. Mcclain, S. L. Gupton, and F. B. Gertler, Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function, Mol. Biol. Cell, vol.25, pp.2604-2619, 2014.

M. Lokar, A. Iglic, and P. Veranic, Protruding membrane nanotubes: attachment of tubular protrusions to adjacent cells by several anchoring junctions, Protoplasma, vol.246, pp.81-87, 2010.

D. Zhu, Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes, J. Cell Sci, vol.118, pp.3695-3703, 2005.

C. Schiller, LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation, J. Cell Sci, vol.126, pp.767-777, 2013.

D. Reichert, Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells, Exp. Hematol, vol.44, p.1092, 2016.

O. Medalia, Organization of actin networks in intact filopodia, Curr. Biol.: CB, vol.17, pp.79-84, 2007.

S. Aramaki, K. Mayanagi, M. Jin, K. Aoyama, and T. Yasunaga, Filopodia formation by crosslinking of F-actin with fascin in two different binding manners, Cytoskeleton, vol.73, pp.365-374, 2016.

J. Pasquier, Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, J. Transl. Med, vol.11, p.94, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00828594

J. W. Ady, Intercellular communication in malignant pleural mesothelioma: properties of tunneling nanotubes, Front. Physiol, vol.5, p.400, 2014.

H. Zhu, Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes, Cell Death Dis, vol.7, p.2523, 2016.

X. Wang and H. H. Gerdes, Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells, Cell Death Differ, vol.22, pp.1181-1191, 2015.

K. E. Keller, J. M. Bradley, Y. Y. Sun, Y. F. Yang, and T. S. Acott, Tunneling nanotubes are novel cellular structures that communicate signals between trabecular meshwork cells, Invest. Ophthalmol. Vis. Sci, vol.58, pp.5298-5307, 2017.

S. Gurke, J. F. Barroso, and H. H. Gerdes, The art of cellular communication: tunneling nanotubes bridge the divide, Histochem. Cell Biol, vol.129, pp.539-550, 2008.

B. Onfelt, Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria, J. Immunol, vol.177, pp.8476-8483, 2006.

K. Mccoy-simandle, S. J. Hanna, and D. Cox, Exosomes and nanotubes: Control of immune cell communication, Int. J. Biochem. Cell Biol, vol.71, pp.44-54, 2016.

V. Thayanithy, Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells, Exp. Cell Res, vol.323, pp.178-188, 2014.

A. Melkov and U. Abdu, Regulation of long-distance transport of mitochondria along microtubules, Cell. Mol. life Sci.: CMLS, vol.75, pp.163-176, 2018.

R. L. Morris and P. J. Hollenbeck, Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons, J. Cell Biol, vol.131, pp.1315-1326, 1995.

O. A. Quintero, Human Myo19 is a novel myosin that associates with mitochondria, Curr. Biol.: CB, vol.19, 2008.

D. Pathak, K. J. Sepp, and P. J. Hollenbeck, Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria, J. Neurosci.: Off. J. Soc. Neurosci, vol.30, pp.8984-8992, 2010.

J. Dubochet, Cryo-electron microscopy of vitrified specimens, Q. Rev. Biophys, vol.21, pp.129-228, 1988.

A. Rigort, Micromachining tools and correlative approaches for cellular cryo-electron tomography, J. Struct. Biol, vol.172, pp.169-179, 2010.

J. R. Kremer, D. N. Mastronarde, and J. R. Mcintosh, Computer visualization of three-dimensional image data using IMOD, J. Struct. Biol, vol.116, pp.71-76, 1996.

R. Hegerl, The EM program package: A platform for image processing in biological electron microscopy, J. Struct. Biol, vol.116, pp.30-34, 1996.