M. Gerstein and W. Krebs, A database of macromolecular motions, Nucleic Acids Res, vol.26, pp.4280-4290, 1998.

N. Echols, D. Milburn, and M. Gerstein, MolMovDB: analysis and visualization of conformational change and structural flexibility, Nucleic Acids Res, vol.31, pp.478-482, 2003.

J. Janin, The kinetics of protein-protein recognition, Proteins, vol.28, pp.153-161, 1997.

J. Janin, K. Henrick, J. Moult, L. T. Eyck, M. J. Sternberg et al., CAPRI: a critical assessment of predicted interactions, Proteins, vol.52, pp.2-9, 2003.

S. J. Wodak and R. Mendez, Predictions of protein-protein interactions: the CAPRI experiment, its evaluation and implications, Curr. Opin. Struct. Biol, vol.14, pp.242-249, 2004.

H. Claussen, C. Buning, M. Rarey, and T. Lengauer, FlexE: efficient molecular docking considering protein structure variations, J. Mol. Biol, vol.308, pp.377-395, 2001.

C. N. Cavasotto and R. A. Abagyan, Protein flexibility in ligand docking and virtual screening to protein kinases, J. Mol. Biol, vol.337, pp.209-225, 2004.

M. Zacharias, Rapid protein-ligand docking using soft modes from Molecular Dynamics simulations to account for protein deformability: binding of FK505 to FKBP, Proteins, vol.54, pp.759-767, 2004.

I. Halperin, B. Ma, H. J. Wolfson, and R. Nussinov, Principles of docking: an overview of search algorithms and a guide to scoring functions, Proteins, vol.47, pp.409-443, 2002.

D. Koshland, Correlation of structure and function in enzyme action, Science, vol.142, pp.1533-1541, 1963.

A. Gutteridge and J. Thornton, Conformational changes observed in enzyme crystal structures upon substrate binding, J. Mol. Biol, vol.346, pp.21-28, 2005.

S. J. Teague, Implications of protein flexibility for drug discovery, Nature Rev. Drug Discov, vol.2, pp.527-541, 2003.

P. Bradley, D. Chivian, J. Meiler, K. M. Misura, C. A. Rohl et al., Rosetta predictions in CASP5: successes, failures, and prospects for complete automation, Proteins, vol.53, pp.457-468, 2003.

C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker, Protein structure prediction using Rosetta, Methods Enzymol, vol.383, pp.66-93, 2004.

J. Skolnick, Y. Zhang, A. K. Arakaki, A. Kolinski, M. Boniecki et al., Touchstone: a unified approach to protein structure prediction, Proteins, vol.53, pp.469-479, 2003.

M. R. Lee, J. Tsai, D. Baker, and P. A. Kollman, Molecular dynamics in the endgame of protein structure prediction, J. Mol. Biol, vol.313, pp.417-430, 2001.

H. Lu and J. Skolnick, Application of statistical potentials to protein structure refinement from low resolution ab initio models, Biopolymers, vol.70, pp.575-584, 2003.

H. Fan and A. Mark, Refinement of homology-based protein structures by molecular dynamics simulation techniques, Protein Sci, vol.13, pp.211-220, 2004.

J. Chen, H. S. Won, W. Im, H. J. Dyson, C. L. Brooks et al., Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling, J. Biomol. NMR, vol.31, pp.59-64, 2005.

C. Venclovas, A. Zemla, K. Fidelis, and J. Moult, Assessment of progress over the CASP experiments, Proteins, vol.53, pp.585-595, 2003.

A. Tramontano and V. Morea, Assessment of homology-based predictions in CASP5, Proteins, vol.53, pp.352-368, 2003.

B. Chen, E. M. Vogan, H. Gong, J. J. Skehel, D. C. Wiley et al., Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein, Structure, vol.13, pp.197-211, 2005.

J. Z. Chen, J. Furst, M. S. Chapman, and N. Grigorieff, Low-resolution structure refinement in electron microscopy, J. Struct. Biol, vol.144, pp.144-151, 2003.

J. M. Davies, H. Tsuruta, A. P. May, and W. I. Weis, Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-Ray scattering, Structure (Camb.), vol.13, pp.183-195, 2005.

A. T. Brünger, Free R value: a novel statistical quantity for assessing the accuracy of crystal structures, Nature, vol.355, pp.472-475, 1992.

N. Go, T. Noguti, and T. Nishikawa, Dynamics of a small globular protein in terms of low-frequency vibrational modes, Proc. Natl Acad. Sci. USA, vol.80, pp.3696-3700, 1983.

B. R. Brooks and M. Karplus, Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor, Proc. Natl Acad. Sci. USA, vol.80, pp.6571-6575, 1983.

M. Levitt, C. Sander, and P. S. Stern, Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme, J. Mol. Biol, vol.181, pp.423-447, 1985.

M. M. Tirion, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis, Phys. Rev. Lett, vol.77, pp.1905-1908, 1996.

F. Tama and C. L. Brooks, III (2002) The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus, J. Mol. Biol, vol.318, pp.733-747

F. Tama, M. Valle, J. Frank, C. L. Brooks, and . Iii, Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy, Proc. Natl Acad. Sci. USA, vol.100, pp.9319-9323, 2003.

F. Tama and Y. Sanejouand, Conformational change of proteins arising from normal mode calculations, Protein Eng, vol.14, pp.1-6, 2001.

W. G. Krebs, V. Alexandrov, C. A. Wilson, N. Echols, H. Yu et al., Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic, Proteins, vol.48, pp.682-695, 2002.

S. Hayward, A. Kitao, and H. J. Berendsen, Model-free methods of analyzing domain motions in proteins from simulations: a comparison of normal mode analysis and molecular dynamics simulation, Proteins, vol.27, pp.425-437, 1997.

M. Delarue and P. Dumas, On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models, Proc. Natl Acad. Sci. USA, vol.101, pp.6957-6962, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-02175167

K. Suhre and Y. Sanejouand, On the potential of normal-mode analysis for solving difficult molecular-replacement problems, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344562

, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.796-799

F. Tama, O. Miyashita, C. L. Brooks, and . Iii, Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM, J. Struct. Biol, vol.147, pp.315-326, 2004.

K. Hinsen, J. Navaza, D. L. Stokes, and J. J. Lacapere, Normal mode-based fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase, Biophys. J, vol.88, pp.818-827, 2005.

B. Qian, A. R. Ortiz, and D. Baker, Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation, Proc. Natl Acad. Sci. USA, vol.101, pp.15346-15351, 2004.

M. Zacharias and H. Sklenar, Harmonic modes as variables to approximately account for receptor flexibility in ligand-receptor docking simulations: application to DNA minor groove ligand complex, J. Comput. Chem, vol.20, pp.287-300, 1999.

M. Levitt, Protein folding by restrained energy minimization and molecular dynamics, J. Mol. Biol, vol.170, pp.723-764, 1983.

K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins, vol.33, pp.417-429, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02159766

I. Bahar, A. R. Atilgan, and B. Erman, Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophys. J, vol.80, pp.505-515, 2001.

I. Bahar, A. R. Atligan, and B. Erman, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold. Des, vol.2, pp.173-181, 1997.

M. Delarue and Y. Sanejouand, Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model, J. Mol. Biol, vol.320, pp.1011-1024, 2002.

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1998.

P. Durand, G. Trinquier, and Y. Sanejouand, A new approach for determining low-frequency normal modes in macromolecules, Biopolymers, vol.34, pp.759-771, 1994.

F. Tama, F. X. Gadea, O. Marques, and Y. Sanejouand, Building-block approach for determining low-frequency normal modes of macromolecules, Proteins, vol.31, pp.1-7, 2000.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan et al., CHARMM: a program for macromolecular energy, minimization, and dynamics calculation, J. Comput. Chem, vol.4, pp.187-217, 1983.

D. Eisenberg and A. D. Mclachlan, Solvation energy in protein folding and binding, Nature, vol.319, pp.199-203, 1986.

P. Koehl and M. Delarue, Polar and nonpolar atomic environments in the protein core: implications for folding and binding, Proteins, vol.20, pp.264-278, 1994.

R. H. Byrd, P. Lu, and J. Nocedal, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Stat. Comput, vol.16, pp.1190-1208, 1995.

C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman, A well-behaved electrostatic potential based method using charge, Nucleic Acids Research, vol.33, issue.14, p.4505, 1993.

, by Institut Pasteur user on 15 July 2019 restraints for determining atom-centered charges: the RESP model

, J. Phys. Chem, vol.97, pp.10269-10280

G. R. Smith and M. J. Sternberg, Predictions of protein-protein interactions by docking methods, Curr. Opin. Struct. Biol, vol.12, pp.28-35, 2002.

A. Valencia and F. Pazos, Computational methods for the prediction of protein interactions, Curr. Opin. Struct. Biol, vol.12, pp.368-373, 2002.

R. Mendez, R. Leplae, L. Maria, and S. J. Wodak, Assessment of blind predictions of protein-protein interactions: current status of docking methods, Proteins, vol.52, pp.51-67, 2003.

R. Chen, J. Mintseris, J. Janin, and Z. Weng, A protein-protein docking benchmark, Proteins, vol.52, pp.88-91, 2003.

G. J. Kleywegt and T. A. Jones, Databases in protein crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.54, pp.1119-1131, 1998.

A. W. Schuettelkopf and D. M. Van-aalten, ProDRGa tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.1355-1363, 2004.

S. Hayward, Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements, J. Mol. Biol, vol.339, pp.1001-1021, 2004.

I. Daidone, D. Roccatano, and S. Hayward, Investigating the accessibility of the closed domain conformation of citrate synthase using essential dynamics sampling, J. Mol. Biol, vol.339, pp.515-525, 2004.

A. D. Mclachlan, Rapid comparison of protein structures, Acta Crystallogr. A, vol.38, pp.871-873, 1982.

O. Marques and Y. Sanejouand, Hinge-bending motion in citrate synthase arising from normal mode calculations, Proteins, vol.23, pp.557-560, 1995.

Q. Cui, G. Li, J. Ma, and M. Karplus, A normal mode analysis of structural plasticity in the biomolecular motor F(1)-ATPase, J. Mol. Biol, vol.340, pp.345-372, 2004.

E. Lindahl, B. Hess, and D. Van-der-spoel, Gromacs 3.0: a package for molecular simulation and trajectory analysis, J. Mol. Model, vol.7, pp.306-317, 2001.

G. A. Kaminski, R. A. Friesner, J. Tirado-rives, and W. L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides, J. Phys. Chem. B, vol.105, pp.6474-6487, 2001.

C. Goh, D. Milburn, and M. Gerstein, Conformational changes associated with protein-protein interactions, Curr. Opin. Struct. Biol, vol.14, pp.104-109, 2004.

E. Westhof, P. Dumas, and D. Moras, Crystallographic refinement of yeast tRNA-Asp, J. Mol. Biol, vol.184, pp.119-147, 1985.