S. J. Wodak and R. Mendez, Predictions of protein-protein interactions: the CAPRI experiment, its evaluation and implications, Curr. Opin. Struct. Biol, vol.14, pp.242-249, 2004.

M. M. Tirion, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis, Phys. Rev. Lett, vol.77, pp.1905-1908, 1996.

I. Bahar, A. R. Atligan, and B. Erman, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold Des, vol.2, pp.173-181, 1997.

K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins: Struct. Funct. and Genet, vol.33, pp.417-429, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02159766

W. G. Krebs, V. Alexandrov, C. A. Wilson, N. Echols, H. Yu et al., Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic, Proteins: Struct. Funct. and Genet, vol.48, pp.682-695, 2002.

V. Alexandrov, U. Lehnert, N. Echols, D. Milburn, D. Engelman et al., Normal modes for predicting protein motions: a comprehensive database assessment and associated Web tool, Prot. Sci, vol.14, pp.633-643, 2005.

L. W. Yang, X. Liu, C. J. Jursa, M. Holliman, A. J. Rader et al., iGNM: a database of protein functional motions based on Gaussian Network Model, Bioinformatics, vol.21, pp.2978-2987, 2005.

H. Wako, M. Kato, and S. Endo, ProMode: a database of normal mode analyses on protein molecules with a full-atom model, Bioinformatics, vol.20, pp.2035-2043, 2005.

M. Delarue and P. Dumas, On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models, Proc. Natl. Acad. Sci, vol.101, pp.6957-6962, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-02175167

K. Suhre and Y. Sanejouand, On the potential of normal-mode analysis for solving difficult molecular-replacement problems, Acta Crystallogr, vol.60, pp.796-799, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344562

E. Lindahl and M. Delarue, Docking refinement using low frequency normal mode amplitude optimization, Nucleic Acids Res, vol.33, pp.4496-4506, 2005.

C. N. Cavasotto, J. A. Kovacs, and R. A. Abagyan, Representing receptor flexibility in ligand docking through relevant normal modes, J. Am. Chem. Soc, vol.127, pp.9632-9640, 2005.

A. May and M. Zacharias, Accounting for global protein deformability during protein-protein and protein-ligand docking, Biochem. Biophys. Acta, vol.1754, pp.225-231, 2005.

M. Delarue and Y. Sanejouand, Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model, J. Mol. Biol, vol.320, pp.1011-1024, 2002.

I. Bahar and A. J. Rader, Coarse-grained normal mode analysis in structural biology, Curr. Op. Struct. Biol, vol.15, pp.586-592, 2005.

K. Suhre and Y. H. Sanejouand, ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement, Nucleic Acids Res, vol.32, pp.610-614, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344557

S. M. Hollup, G. Salensminde, and N. Reuter, WEBnm@: a web application for normal mode analysis of proteins, BMC Bioinformatics, vol.6, p.52, 2005.

W. Zheng and B. R. Brooks, Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin, Biophys. J, vol.89, pp.167-178, 2005.

F. Tama, F. X. Gadea, O. Marques, and Y. Sanejouand, Building-block approach for determining low-frequency normal modes of macromolecules, Proteins: Struct. Funct. and Genet, vol.31, pp.1-7, 2000.

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, pp.0-89871, 1998.

W. L. Delano, The PyMOL Molecular Graphics System, 2002.

D. Van-der-spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark et al., GROMACS: fast, flexible and free, J. Comp. Chem, vol.26, pp.1701-1719, 2005.

F. Tama and Y. Sanejouand, Conformational change of proteins arising from normal mode calculations, Prot. Eng, vol.14, pp.1-6, 2001.

M. K. Kim, R. L. Jernigan, and G. S. Chirikjian, Efficient generation of feasible pathways for protein conformational transitions, Biophys J, vol.83, pp.1620-1630, 2002.

W. Delano and A. T. Brunger, The direct rotation function: patterson correlation search applied to molecular replacement, Acta Crystallogr, vol.51, pp.740-748, 1995.

, The CCP4 suite: programs for protein crystallography, Collaborative Computational Project, vol.50, pp.760-763, 1994.

K. Hinsen, N. Reuter, J. Navaza, D. L. Stokes, and J. J. Lacapere, Normal mode-based fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase, Biophys. J, vol.88, pp.818-827, 2005.

H. R. Saibil, A. L. Horwich, and W. A. Fenton, ATP-bound states of GroEL captured by cryo-electron microscopy, Cell, vol.107, pp.869-879, 2001.

J. Navaza, AMoRe: an automated package for molecular replacement, Acta Cryst, vol.50, pp.157-163, 1994.

D. Tobi and I. Bahar, Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state, Proc. Natl Acad. Sci, vol.102, pp.18908-18913, 2005.