S. Flores, E. Echols, D. Milburn, B. Hespenheide, K. Keating et al., The Database of Macromolecular Motions: new features added at the decade mark, Nucleic Acids Res, vol.34, pp.296-301, 2006.

D. D. Boehr, D. Mcelhenny, H. J. Dyson, and P. E. Wright, The dynamic energy landscape of dihydrofolate reductase catalysis, Science, vol.313, pp.1638-1642, 2006.

W. P. Jencks, Catalysis in Chemistry and Biology, 1987.

W. G. Krebs and M. Gerstein, The Morph Server: a standardized system for analyzing and visualizing macromolecular motions in a database framework, Nucleic Acids Res, vol.28, pp.1665-1675, 2000.

M. Tirion, Large amplitude elastic motions in proteins from a single parameter, atomic analyses, Phys. Rev. Lett, vol.77, pp.1905-1908, 1996.

N. Go, Theoretical studies of protein folding, Annu. Rev. Biophys. Bioeng, vol.12, pp.183-210, 1983.

W. G. Krebs, V. Alexandrov, C. A. Wilson, N. Echols, H. Yu et al., Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic, Proteins, vol.48, pp.682-695, 2002.

P. Maragakis and M. Karplus, Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase, J. Mol. Biol, vol.352, pp.807-822, 2005.

R. B. Best, Y. G. Chen, and G. Hummer, Slow protein conformational dynamics from multiple experimental structures: the helix/sheet transition of Arc Repressor, Structure, vol.13, pp.1755-1763, 2005.

O. Miyashita, J. N. Onuchic, and P. G. Wolynes, Nonlinear elasticity, proteinquakes and the energy landscapes of functional transitions in proteins, Proc. Natl Acad. Sci. (USA), vol.100, pp.12570-575, 2003.

K. I. Okazaki, N. Koga, S. Takada, J. N. Onuchic, and P. G. Wolynes, Multiple-basin energy-landscapes for large-amplitude conformational motions of proteins: structure-based molecular dynamics simulations, Proc. Natl Acad. Sci. (USA), vol.103, pp.11844-11849, 2006.

H. Kramers, Transition state theory, Physica, vol.7, p.284, 1940.

L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev, vol.91, pp.1505-1512, 1953.

A. E. Cardenas and R. Elber, Atomically detailed simulations of helix formation with the stochastic difference equation, Biophys. J, vol.85, pp.2919-2939, 2003.

I. Lipfert, J. Franklin, F. Wu, and S. Doniach, Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing, J. Mol. Biol, vol.349, pp.648-658, 2005.

P. Eastman, N. Gronbech-jensen, and S. Doniach, Simulation of protein folding by reaction path annealing, J. Chem. Phys, vol.114, pp.3823-3841, 2001.

A. Ghosh, R. Elber, and H. A. Scheraga, An atomically detailed study of the folding pathways of protein A with the stochastic difference equation, Proc. Natl Acad. Sci. (USA), vol.99, pp.10394-10398, 2002.

J. Wang, K. Zhang, H. Lu, and E. Wang, Quantifying kinetic paths of protein folding, Biophys. J, vol.89, pp.1612-1620, 2005.

P. Faccioli, M. Sega, F. Pederiva, and H. Orland, Dominant pathways in protein folding, Phys. Rev. Lett, vol.97, p.108101, 2006.

M. Delarue and Y. H. Sanejouand, Normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model, J. Mol. Biol, vol.320, pp.1011-1024, 2002.

D. A. Kondrashov, Q. Cui, and G. N. Phillips, Optimization and evaluation of a coarse-grained model of protein motion using X-Ray crystal data, Biophys. J, vol.91, pp.2760-2767, 2006.

R. Kolodny, P. Koehl, L. Guibes, and M. Levitt, Small libraries of protein fragments model native protein structures accurately traces, J. Mol. Biol, vol.323, pp.297-307, 2002.

P. Koehl and M. Delarue, Application of a self-consistent mean field theory to predict protein side chain conformations and estimate their entropy, J. Mol. Biol, vol.239, pp.249-275, 1994.

K. Hinsen and G. Kneller, Harmonicity in slow protein dynamics, Chem. Phys, vol.26, pp.25-37, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02155521

F. Tama and Y. H. Sanejouand, Conformational changes of proteins arising from Normal Modes calculation, Prot. Engng, vol.14, pp.1-6, 2001.

M. K. Kim, R. L. Jernigan, and G. S. Chirikjian, Efficient generation of feasible pathways for protein conformational transitions, Biophys. J, vol.83, pp.1620-1630, 2002.

Y. Jang, J. J. Jeong, and M. K. Kim, UMMS: constrained harmonic and anharmonic analyses of macromolecules based on elastic network models, Nucleic Acids Res, vol.34, pp.57-62, 2006.

E. Lindahl, C. Azuara, P. Koehl, and M. Delarue, NomadRef: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis, Nucleic Acids Res, vol.34, pp.52-56, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-02175154

K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins, vol.33, pp.417-429, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02159766

E. Eyal, L. W. Yang, and I. Bahar, Anisotropic Network Model: systematic evaluation of a new web interface, Bioinformatics, vol.22, pp.2619-2627, 2006.