
1

Supplementary File S2

Céline Trébeau, Jacques Boutet de Monvel, Fabienne Wong Jun Tai, Chris-

tine Petit, Raphaël Etournay.

1. The maximum value of the entropy of a barcode distribu-

tion

Given an integer N ≥ 1, let C = (b1, ..., bN) be any list chosen among n avail-
able barcode indices (bi ∈ {1, ..., n} for 1 ≤ i ≤ N), and let x = (x1, ..., xn) be
the corresponding empirical distribution, de�ned by xl = #{i ≤ N : bi = l}
for 1 ≤ l ≤ n, that is, xl is the number of times the index l occurs in
(b1, ..., bN). To x we associate its Shannon entropy S(x) = S(x1, ..., xl) =
−
∑n

l=1 pl log(pl), where pl = xl
N for 1 ≤ l ≤ n. We will denote S(C) =

S(x) = S(p) and talk indi�erently about the entropy of C, x or p. The
purpose of this section is to prove the following:

Proposition. Given any n-tuple x = (x1, ..., xn) of positive integers such
that

∑n
l=1 xl = N , the maximum possible value of S(x) is

Smax = −(n− r)bN/nc
N

log(
bN/nc
N

)− r dN/ne
N

log(
dN/ne
N

) (1)

where r denotes the rest of the division of N by n, and bαc and dαe denote
the lower and upper integer parts of α, respectively.

Proof. Note �rst that, by euclidean division of N by n, we may write N =
nbN/nc + r = (n − r)bN/nc + rdN/ne, where r ∈ {0, ..., n − 1}. It follows
that we may form a distribution x∗ = (x∗1, ..., x

∗
n) such that

∑n
l=1 x

∗
l = N by

setting x∗1 = ... = x∗n−r = bN/nc, and x∗n−r+1 = ... = x∗n = dN/ne. Clearly
S(x∗) = Smax, and similarly S(x) = Smax for any distribution x obtained by
a permutation of x∗. Let now x = (x1, ..., xn) be any distribution satisfying∑n

l=1 xl = N . We may then proceed to perform a sequence of changes that
will bring x to one of the permuted versions of x∗, as follows:

i) Search for an index s ∈ {1, ..., n} such that xs ≥ dN/ne+ 1. If no such s
exists, stop.
ii) If such an s is found, there must exist another index s′ such that xs′ ≤
bN/nc − 1 (for otherwise one would deduce that

∑n
l=1 xl ≥ N + 1). De�ne

the new distribution y = (y1, ..., yn) by setting ys = xs − 1, ys′ = xs′ + 1,
and yl = xl for l 6= s, s′. Set x← y and proceed to step i).

2

It should be clear that a �nite number of iterations of steps i) and ii) will
produce a distribution x whose entries are all equal either to bN/nc or to
dN/ne. Hence this distribution must be a permutation of x∗ as claimed. To
complete the proof of the proposition, it su�ces to note that, as a result of
well known concavity properties of the entropy, for each of these steps we
have S(y) ≥ S(x). For the convenience of the reader, we detail the proof
below:

Lemma. Let x = (x1, ..., xn) be any integer distributions satisfying
∑n

l=1 xl =
N , and let y = (y1, ..., yn) be a distribution obtained from x by application
of the steps i) and ii) above. Then S(y) ≥ S(x).

Proof. Setting pl =
xl
N , p′l =

yl
N for 1 ≤ l ≤ n, note that we have p′s = ps− 1

N ,
p′s′ = ps′ +

1
N , and p′l = pl for l 6= s, s′. It follows that

S(y)− S(x) = −
∑n

l=1 p
′
l log(p

′
l) +

∑n
l=1 pl log(pl)

=
∑n

l=1 pl(log(pl)− log(p′l)) +
1
N (log(p′s)− log(p′s′))

=
∑n

l=1 pl log(
pl
p′l
) + 1

N log(p′s
p′
s′
).

In the last expression, the �rst term
∑n

l=1 pl log(
pl
p′l
) is nothing but the relative

entropy (or Kullback-Leibler divergence) of the distribution p = (pl) with
respect to p′ = (p′l), which is well known to be positive; the second term
is also positive, since p′s ≥ p′s′ by construction. Therefore, we have S(y) −
S(x) ≥ 0, as was to be shown.

The above lemma is best understood in the context of majorization theory.
Namely, the inequality S(y) ≥ S(x) follows from the fact that the sequence
y is �less spread� than x, and that the Shannon entropy increases under
spreading. In technical terms, y is majorized by x, and S is a Schur-concave
function. (For precise de�nitions and a detailed account of majorization
theory, see Marshall, Olkin and Arnold, 2011.) Here, y is obtained from x
by a �T -transform� (also called �Dalton transfer� or �Robin Hood transfer�),
that is an operator of the form y = Tx = λx + (1 − λ)x′, where 0 ≤ λ ≤ 1
and x′ is obtained from x by exchanging two entries. The e�ect of such
a transform is to mix two entries of a vector, making them closer without
changing their sum, which can only increase the entropy.

3

2. Optimization of the entropy of barcode distributions by a

Random-Greedy search algorithm

Let us �rst �x some notations. We denote I = {b1, ..., bn} the set of avail-
able barcodes in some RNAseq experiment, and Ccomp = {c1, ..., cNcomp} a
set of Ncomp compatible barcode combinations, such as the set produced by
Step 1 of the DNAbarcodeCompatibility algorithm (�2.1). For a multiplex-
ing level k, each combination can be seen as a k-tuple c = (bl1 , ..., blk), i.e.
an element of Ik, whose coordinates are distinct and ordered indi�erently.
We consider here the problem of maximizing the entropy a set of a = N/k
barcode combinations selected from Ccomp (Step 2 of the algorithm). Each
selection is itself a a-tuple C = (ci1 , ..., cia) of compatible combinations, or
an element of (Ccomp)

a without repetitions, which can also be seen as a vec-
tor of N = ak barcodes, C = (b1, ..., bN) ∈ IN , this time with possible
repetitions. The entropy of C is de�ned as above as the Shannon entropy
of the empirical distribution x = x(C) = (x1, ..., xn) corresponding to C.
(That is, S(C) = S(x) = S(x1, ..., xn) where xl = #{i ≤ N : bi = l} for
1 ≤ l ≤ n.) Because Ccomp is a subset of the set of all

(
n
k

)
possible combina-

tions, �nding a selection C of maximum entropy in (Ccomp)
a is a non trivial

combinatorial optimisation problem. Even though Ncomp is usually much
smaller than

(
n
k

)
, in general the total number

(
Ncomp

a

)
of possible selections

is prohibitively large, making an exhaustive search impractical. Fortunately,
it turns out that a simple random-search algorithm performs very well in
maximizing the entropy. The random search can moreover be supplemented
by a greedy-like strategy, making the algorithm highly e�ective in practice.
The question of �nding an exact entropy maximization algorithm is thus of
limited practical interest for applications to RNAseq experiments, and was
left for further work. Two random-greedy search algorithms (referred to as
the greedy-descent and the greedy-exchange algorithms, described in pseudo-
code below) are implemented in the DNAbarcodeCompatibility package. In
the implementation, the chosen algorithm (either greedy descent or greedy
exchange) is iterated a number of times in order to ensure a high probability
of attaining the combination of highest entropy among the possible choices
of C ⊂ Ccomp. At the end of the iterations, the solution of highest entropy
that has been found is chosen.

These two greedy algorithms were tested extensively on sets Ccomp that
were randomly chosen from the compatible barcode combinations generated
either for the Illumima barcode set (which contains 48 barcodes), or an ar-
ti�cially generated set of barcodes that was disjoint from the Illumina set
and constrained to be robust against a single base calling error. The results

4

of these simulations are described in the Supplementary File S1 (R Mark-
down document �Simulations�) accompanying the package's documentation
on GitHub. Qualitatively similar results were obtained on sets Ccomp that
were fully randomly generated (by picking Ncomp combinations among the(
n
k

)
possible choices). In brief, the random-greedy algorithms appear to be

near-optimal in the sense that in most of the cases tested they either �nd
a solution reaching the maximum entropy bound Smax (given by Eq. 1
above), or a solution having an entropy Sopt close to Smax, which is, with
high probability, the selection of maximum entropy attainable for the set
Ccomp at hand. In a few exceptional, or �degenerate� cases, the probability
to �nd an optimal combination turned out to be less than 1%. While not
garanteed to be optimal, the combination obtained after 100 iterations of
the greedy algorithm in such cases was still better optimized (with a bar-
code distribution much closer to the uniform distribution) than the combi-
nation of highest entropy found among 100 combinations picked at random.
For details see the Supplementary File S1 on https://github.com/comoto-
pasteur-fr/DNABarcodeCompatibility.

Algorithm 1: Procedure Greedy Descent:
Set N ′ > a (by default N ′ = min(Ncomp, 120);
Generate random initial selection C′ = (c1, ..., cN′) ⊂ Ccomp;
while N ′ > a do:

Solve l∗ = arg max1≤l≤N′(S(C
′ − cl));

(C′ − cl denotes the selection obtained from C′ by removing cl)
Set N ′ ← N ′ − 1 and C′ ← C′ − cl∗ ;

end while
Output C′

Algorithm 2: Procedure Greedy Exchange
Set N ′ > a (by default N ′ = min(Ncomp, 120);
Generate random subset C′ = (c1, ..., cN′) ⊂ Ccomp;
Generate random initial selection C = (c1, ..., ca) ⊂ C′;
while C is not 2-exchange optimal do:

search for l ∈ {1, ..., a} and for i ∈ {1, ..., N ′} such that S(C − cl + ci) > S(C):
(C − cl + ci denotes the selection obtained from C by exchanging cl with ci)

if l and i are found, set C ← C − cl + ci and escape search;
else declare C to be 2-exchange optimal.

end while
Output C

