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ABSTRACT

Terminal deoxynucleotidyltransferase (Tdt) and
DNA polymerase k (pol k) are two eukaryotic highly
similar proteins involved in DNA processing and
repair. Despite their high sequence identity, they
differ widely in their activity: pol k has a templated
polymerase activity, whereas Tdt has a non-
templated one. Loop1, first described when the Tdt
structure was solved, has been invoked as the major
structural determinant of this difference. Here we
describe attempts to transform Tdt into pol k with
the minimal number of mutations in and around
Loop1. First we describe the effect of mutations
on six different positions chosen to destabilize Tdt
Loop1 structure, either by alanine substitution or by
deletion; they result at most in a reduction of Tdt
activity, but adding Co++ restores most of this Tdt
activity. However, a deletion of the entire Loop1 as
in pol j does confer a limited template-dependent
polymerase behavior to Tdt while a chimera bearing
an extended pol k Loop1 reproduces pol k behavior.
Finally, 16 additional substitutions are reported, tar-
geted at the two so-called ‘sequence determinant’
regions located just after Loop1 or underneath.
Among them, the single-point mutant F401A dis-
plays a sequence-specific replicative polymerase
phenotype that is stable upon Co++ addition. These
results are discussed in light of the available crystal
structures.

INTRODUCTION

Pol m is a recently described mammalian polymerase
belonging to the polX family (1,2). Since its discovery
(3,4) its exact function(s) and physiological substrate(s)
have been the subject of intense research. Quite early on,

it has been implicated in the non-homologous end joining
(NHEJ) process that is responsible for repairing double
strand breaks in the DNA (5,6). Indeed, it was demon-
strated that pol m physically interacts with Ku 70/80,
XRCC4 and Ligase IV (7), as shown earlier for Tdt (8).
In addition, pol m has been shown (successively) to be able
to incorporate ribonucleotides as well as deoxynucleotides
(9,10), to function as a translesion polymerase (i.e.
to bypass defects in the DNA such as Pt-DNA adduits
or AAF-adduits), and to be error-prone, especially
prone to slippage (frameshift) errors (11–14).

Strikingly, it was shown that pol m accommodates gaps/
breaks in the template strand, namely that it can still
direct a template-based DNA synthesis provided that
there is ‘micro-homology’ upstream the templating base,
with at least one Watson-Crick base pair (15). This estab-
lishes a ‘gradient of template dependence’ in the different
members of the polX family, going from pol b and pol � to
pol m and TdT. Pol b is thought to be mainly involved in
the nucleotide-excision or base-excision repair processes
with 1 or 2 nt gaps in the primer strand. On the sequence
level pol b and pol � form a subgroup different from pol m
and Tdt, but they also have some translesion polymerase
activity (16). The exact role of each of these polX members
is difficult to establish as there appears to be some func-
tional redundancy between them (5,6,15,17). Other mem-
bers of the polX family identified in yeasts also have
unusual slippage properties and the ability to bypass
defects in DNA (18–21).

Until recently, the closest homologous structure avail-
able for pol m was terminal deoxynucleotidyltransferase
(Tdt), whose structure has been solved in our laboratory
in 2002 (22). The physiological role of Tdt is to add
nucleotides in the variable regions of immunoglobulins
during V(D)J recombination. Tdt is well known to be
unable to perform template-based DNA synthesis. This
was readily explained once the Tdt structure was revealed
(22), because the so-called Loop1 sterically interferes
with the path of a putative template strand. In principle
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pol m 3D structure should be amenable to homology mod-
eling techniques, as it has about 42% sequence identity
with Tdt. Pol m does possess a Loop1 of length similar
to the one of Tdt, but its sequence differs widely from
that of Tdt and its length (16–18 aa) prevents a reliable
prediction of its structure by homology modeling
techniques.

More recently the crystal structure of mouse pol m itself
was solved as a complex with a template–primer duplex
(23): it turns out that Loop1 is invisible in the electron
density map from residues 370 to 384, meaning that it is
essentially disordered. To appreciate the inherent flexibil-
ity of this loop we generated dozens of possible Loop1
conformations using the Knapp algorithm (24) as imple-
mented in our website PDB_Hydro (25) starting from
pol m structure. They differ widely, mainly because they
are completely exposed to the solvent region and there
is no real way to distinguish between them (they have a
very similar energy). Loop1 may of course become
ordered once the true substrate is bound, for instance a
gapped template–primer duplex. Clearly, this is a situation
where modeling studies must be supplemented by as much
experimental data as possible.

Both pol � (26–29) and pol b (30–32) have been the
subject of intense structural characterization in the
recent years but both of them lack Loop1 altogether
(Figure 1). Therefore, the challenge remains to try to
understand the structural basis of the functional role
of Loop1 in pol m in the absence of a known ordered struc-
ture of Loop1 deposited in the PDB.

Here we address this problem by using molecular
biology techniques with the aim of switching activities
(i.e. making pol m from Tdt) through the minimum
number of mutations. This is in effect the reverse of the
experiments reported by Blanco and colleagues (33) on
pol m, which were able to confer Tdt activity to a pol m
by grafting just its Loop1. In the following we will
describe activity assays of 28 mutants of Tdt and we will
often refer to ‘Tdt activity’ and ‘pol m activity’; by this we
simply mean an activity identical (in the same conditions)
to wild-type Tdt or pol m, respectively (provided as con-
trols in the same figure).

The initial strategy was to destabilize the structure of
Loop1, in order to render it more prone to be displaced by
the template strand. Mutations were designed to target
those residues that were previously described to contribute
to the stability of Tdt Loop1 structure (22). First, substi-
tutions by alanine were tried, then cumulative deletions.
Both strictly conserved and less highly conserved residues
were targeted. Then a larger deletion inspired by pol �
and a chimera with pol m Loop1 were tried. Finally, the
study was further extended to two adjacent regions that
are called sequence-determinant regions (SD1 and SD2)
located downstream of Loop1 (SD1) and underneath it
(SD2): they involve stretches of residues that are strictly
conserved in all known Tdt sequences and all known pol m
sequences but differ one from the other [see Figures 1
and 2 of (22)].

A still unresolved issue in our case comes from the role
of Co++ (or Mn++), which is known to accelerate greatly
the template-independent nucleotidyltransferase activity

of TdT, especially for pyrimidine incorporation (34,35).
Although this effect has been known for many years, its
structural basis is still unknown and will be only briefly
discussed here. Nevertheless, we will report systematically
activity assays of all mutants described here both with
and without added Co++. Even though neither Mn++

nor Co++ are present at the mM concentration in phys-
iological conditions, it has been shown for Tdt that both
divalent ions mimick well mixtures of Mg++ and Zn++ in
concentrations close to that encountered in physiological
conditions, as they can play the role of both Mg++ and
Zn++ (36); they are also easier to use and dose than
Zn++, which can stick to surface residues and/or cysteines
when present in the mM range concentration, resulting in
non-specific effects. We have shown in control experiments
that adding 1mM Co++ or Mn++ have qualitatively
comparable effects both on Tdt and pol m, but Co++ is
quantitatively more effective than Mn++: in particular,
1mM of Co++ is enough to switch on a significant part
of the intrinsic template-independent nucleotidyltransfer-
ase activity of wild-type pol m (Supplementary Figure S1).

MATERIALS AND METHODS

Cloning of TdT mutants

Single point mutations were obtained by a PCR-based
method using the Site-Directed Mutagenesis kit from
Finnzymes. This mutagenic protocol uses the Phusion
High-Fidelity DNA polymerase and comprises three
steps: (i) PCR amplification of target plasmid with two
50-phosphorylated primers purified with reverse phase
high performance liquid chromatography (RP-HPLC)
and purchased from Sigma-Proligo; (ii) purification
(Wizard SV Gel and PCR Clean-Up System, Promega)
and circularization by ligation with Quick T4 DNA
Ligase (New England Biolabs) overnight at 168C of
mutated PCR products; (iii) transformation into
Escherichia coli DH5a by electroporation. All construc-
tions were confirmed by sequencing (GATC Biotech).

Construction of the chimera and the long deletion

The starting material was mouse Tdt as cloned in a
Novagen pET28 vector (37). In the first step, 29 aa of
mouse Tdt Loop1 were deleted, corresponding to amino-
acid residues (378–406) CDILESTFEKFKQPSRKVDAL
DHFQKCFL. This construction was obtained by PCR
using the Site-Directed Mutagenesis kit from Finnzymes
with 50-phosphorylated primers (30 nt) that border the
deleted area on both sides. In the second step, after
DNA sequencing to confirm the deletion, 30 amino-acid
residues (HQYHRSHLADSAHNLRQRSSTMDVFERS
FC) of pol m Mouse Loop1 were added. The insertion
was achieved in two PCR steps. The 50-phosphorylated
oligonucleotides were:

Chimera1_Fwd: 50TTGGCAGACTCAGCCCACAACC
TGATTCTGAAGCTGGACCACGGG
Chimera1_Rev: 50ATGGCTGCGGTGGTACTGGTGG
TACAAAAGCAACCCCTGCTGC
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Chimera2_Fwd: 50TGTCTTTGAGAGGAGTTTCTGC
TTCTGAAGCTGGACCACGGGAGA
Chimera2_Rev: 50CATGGTGGAGCTCCGCTGCCGC
AGGTTGTGGGCTGAGTCTGCCAA

After each step each construct was confirmed by DNA
sequencing.
The �13 construct, which transforms CDILESTFEKF

KQPSRKVDALDHFQKCFL into CDILEST-ADHFQ
KCFL, was also built using the following oligonu-
cleotides:

Delta-13_Fwd: 50 CGACATCTTAGAGTCAACCGCCG
ACCATTTCCAGAAATGC
Delta-13_Rev: 50 GCATTTCTGGAAATGGTCGAGGG
TTGACTCTAAGATGTCG

Purification of Tdt mutants

After getting the mouse Tdt chimera clone, BL21-Gold
DE(3) pLysS Escherichia coli cells were transformed.
The bacterial culture (2 l) was grown at 378C until
OD600 0.6–0.7. After addition of 1mM isopropyl-b-
D-thiogalactopyranoside (IPTG), cultures were incubated
at 168C overnight (16 h) and harvested by centrifugation
at 4000 rpm during 15min (37).
The pellet was suspended in 100ml containing 50mM

Tris–HCl pH 8, 500mM NaCl, 5mM Imidazole, supple-
mented with tablets protease inhibitor cocktail (Complete,
EDTA-Free, Roche), lysed by sonication on ice and cen-
trifuged at 15 000 rpm during 30min. The supernatant
was filtered through a 0.45 mm filter, loaded at a rate of
1ml/min on a 5ml Nickel-affinity resin (HisTrapHP, GE
Healthcare). Fractions containing the chimera were
pooled, dialyzed in Buffer A [50mM NaOAc, pH 4.9,
50mM Mg(OAc)2, 50mM (NH4)2SO4, 200mM NaCl,
10% Glycerol and 5mM DTT] and then loaded on a
ion exchanger HiLoad 16/10 SP Sepharose column (GE
Healthcare) equilibrated in Buffer A (38). Proteins were
eluted with 2M NaCl gradient, pooled and dialyzed in
Buffer B [50mM MES, pH 6.5, 50mM Mg(OAc)2,
200mM KCl, 5mM DTT, 10% Glycerol]. Dialyzed
fractions were concentrated with Amicon Ultra10K
(Millipore) and stored at �208C after addition of
50% glycerol. Purified proteins were analyzed by
SDS–polyacrylamide gel electrophoresis, using a 12%
acrylamide gel and molecular mass standards from
BioRad (Low Range). Gels were stained with Coomassie
Blue R-250. All mutants of Tdt were purified in the
same way.

Purification of polymerase mu

A truncated version of mouse pol m lacking the N-terminal
domain and identical to the one described in (23)
was cloned in pET16b with a TEV cleavage site
(ENLYFQGS) between the His-Tag and the begin-
ning of the sequence (MPAYACQR). Bacterial cell
culture of transformed BL21-Gold DE(3) pLysS
was similar to that described for Tdt, except that cell
culture was continued after induction by IPTG at
208C for pol m. Cell lysis and all purification steps were

carried out at 48C, and involved first a HisTrap column,
cleavage by the TEV protease, and repurification on
the HisTrap column to get rid of uncleaved pol m and
tagged TEV protease. Finally the resulting cleaved pro-
tein (checked by mass spectrometry) was purified on a
Superdex 75 gel filtration column and dialyzed
into 25mM Tris–HCl pH 8, 200mM NaCl, 5% glycerol.
It was then concentrated up to 10mg/ml and stored
at 48C.

Polymerase activity tests

Primer strand was 50-labeled with g-32P-ATP (GE-
Healthcare, 3000Ci/mM) and T4 polynucleotide kinase
(New England Biolabs) during 1 h at 378C; the labeling
reaction was stopped by inactivating the kinase at 758C
for 10min. The polymerization reaction typically involved
0.05 mM duplex, 2 mM polymerase and 250 mM dNTPs
(Qiagen). It was stopped after 30min at 378C by the
addition of 10mM EDTA and 95% formamide and
the products of the reaction were analyzed by gel electro-
phoresis on a 20% acrylamide gel, 8M urea. The 0.4mm
wide gel was run for 4–5 h at 40V/cm and scanned
by a PhosphorImager Storm 860 (Molecular Dynamics,
Amersham).

For activity tests, the protein is typically diluted to the
final desired concentration using a 10� reaction buffer: for
pol m, this 10� buffer contains Tris–HCl 500mM pH 7.1,
TCEP 10mM and MgCl2 10mM; for Tdt, it contains
Tris–HCl 250mM pH 6.6, Na-cacodylate 2M, MgCl2
40mM and BSA 2.5mg/ml. For activity tests in the
presence of Co++ or Mn++, everything was similar
except for the addition of CoCl2 (or MnCl2) at the final
concentration of 1mM.

In order to quantify the sequence specificity of nucleo-
tide incorporation we integrated the intensity in the spot
corresponding to the non-elongated labeled primer strand
for the expected (Iright) and wrongly incorporated (Iwrong)
nucleotides. We then calculated the quantity Q=1 – Iright/
<Iwrong>, where <Iwrong> is the mean value of Iwrong for
the three misincorporated nucleotides.

Oligonucleotides

Oligonucleotides were purchased from Eurogentec
(Belgium), dissolved in Tris 50mM pH 8, 1mM EDTA,
30mM NaCl and annealed by heating during 5min up to
908C; slow cooling to room temperature was allowed to
take place overnight. All concentrations were estimated
by UV absorbance using an absorption coefficient e at
260 nm as given by Eurogentec.

Mass spectrometry controls

The molecular weight of the purified fragment after diges-
tion by TEV protease was determined by mass spectrom-
etry (SELDI–TOF) after capture on various chemical
surfaces (ProteinChip Arrays) using the Ciphergen’s
technology (BioRad).
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RESULTS

Substitution mutations aimed at destabilizing Loop1
conformation as seen in Tdt crystal structure

A number of single point mutants of Loop1 of Tdt
have been generated in order to convert Tdt into a
replicative polymerase on the basis of its three-
dimensional structure (22). The general organization of
sequence motifs along Tdt sequence is shown in
Figure 1, along with a blow-up of the sequence of related
polX in and around Loop1. The first mutations were
designed to target those residues (T384 and S392) that
were previously described to contribute to the stability
of Tdt Loop1 structure through a specific network
of hydrogen-bonds (22). Single point mutations into
an alanine were performed (T384A, S392A), purified
and tested for activity. The results show that both
mutants still display a Tdt-like activity but no pol m
activity (i.e. template-dependent) on a normal template–
primer duplex (Figure 2). The double mutant
TS!AA was also constructed with similar results (data
not shown).

Looking at the multialignment of all known Tdt
sequences and all known pol m sequences, the position
P391 stands out as a potential sequence determinant of
the sub-families [see Figure 2 in (22)]. Therefore, the
mutant P391L, also likely to destabilize Loop1 conforma-
tion in Tdt, was expressed, purified and tested. However,
this mutation did not change the phenotype (Figure 2B).
Next, the mutation S383A was also done because this

position is the only one to be strictly conserved among all
known Tdt sequences in Loop1: this time, the phenotype
shows a much reduced Tdt-like activity for all dNTPs
and also when all four dNTPs are added in the reaction
mixture (Figure 2), but still no real template-directed
synthesis.
For the sake of completeness, two additional mutants

were constructed and tested, namely F385A and D396A.
The first one involves a position that is not strictly con-
served but is always of an hydrophobic amino-acid
type and the second is always a carboxylic acid. On the
structural level (22), F385 is in interaction with F401,
whose mutation has a very strong effect on Tdt activity
(see below). D396A mutants give a phenotype very similar

Figure 1. General organization of Tdt sequence and related polX members. Top: domain organization with the N-terminal BRCT-like domain and
the C-terminal polX domain. Bottom: sequence motifs and determinants in Tdt core domain are indicated with the following color code: Motifs C
and A (HDVD and DVR) are in magenta as well as the ALLGWTGS sequence, all known to be involved in the dNTP-binding site (22). Loop1 is in
red, while SD1 and SD2 regions are in green. The SD1 and SD2 regions are defined as those strictly conserved regions in all Tdt sequences and all
pol m sequences, with length at least two contiguous amino acids, and that differ from one family to the other. The sequences of mouse Tdt, mouse
pol mu, and human pol � and human pol b are shown aligned for selected regions, namely the Loop1 + SD1 and SD2 regions. The chimera
construct (Tdt and pol m Loop1) can be read by following sequentially the blue–red–blue colors. The peptide suppressed in the �13 construct is
indicated in magenta in the Tdt sequence. The Loop1 mutations are shown with magenta vertical arrows while the SD1 (and beyond) and SD2
regions mutations are shown with green arrows. The pol m chimera construct of Juarez et al. (2006) in (33) is shown with a red horizontal arrow, with
the two neighboring b strand limits indicated with black horizontal arrows.
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to the wild-type one, while F385A resembles the S383A
phenotype, with a much reduced Tdt-like activity
(Figure 2).
In all cases, the addition of 1mM Co++ restores full

TdT activity to the mutant (see Table 1, where the effect of
all the mutants described here are summarized, with or
without Co++ added).
In summary, destabilizing the structure of Loop1 as

seen in Tdt crystal structure is not enough to switch its

activity from a template-independent one to a template-
directed one.

Deletion point mutations in Loop1 and full Loop1
deletion as in pol j

Assuming that the length of Tdt was important for its
stability and function, we constructed different deletion
mutants at the positions described above (�384 and
�392), as well as the corresponding double deletion.

Figure 2. Substitution Tdt Mutants in Loop1. (A) Catalytic activity without CoCl2 but in the presence of 4mM MgCl2 (from left to right) of
wild-type Tdt, S383A, T384A and F385A mutants is shown for each dNTP and a mixture of all dNTPs, using the oligonucleotide duplex indicated
on top as a primer. (B) The activity without CoCl2 but in the presence of 4mM MgCl2 (from left to right) of Tdt wild-type, P391L, S392A and
D396A mutants is shown for each dNTP and a mixture of all dNTPs, all using the oligonucleotide duplex indicated on top as a primer.
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Again, we see no switch of activity (Figure 3A), but
the double mutant �2384/392 is clearly less active than
the single deletion mutants. To confirm this trend we
also expressed the triple deletion mutant �3384/391/392,
where an additional deletion was made at position P391.
The enzyme indeed becomes even less active, up to the
point where it actually only incorporates a few nucleotides
(instead of several hundreds) when individual dNTPs are
added, with a clear preference for 1-2G or 2-3C. This is
also true when adding the 4 nt dNTPs, where synthesis
stops after 4 incorporations. However, it switches back
to fully active again upon addition of Co++ (Table 1
and Figure 3B).

In the next step, an attempt was made to mimic pol � by
deleting most of Loop1: 13 residues were deleted, as
guided by the multialignement of the corresponding
sequences (Figure 1). The corresponding enzyme now
displays templated polymerase behavior: it adds one
(expected) G, but no or very little of A or T
(Figure 4A). It also makes errors in that a C (or two) is
also efficiently incorporated. When all four dNTPs are
provided for, it incorporates up to only two or three
bases, instead of the five expected ones. Upon addition
of Co++, one observes partial restoration of template-
independent nucleotidyltransferase activity that is compa-
rable to the corresponding basal activity of pol m in the
presence of Co++ (Figure 4B).

In conclusion, gradual deletions in Loop1 showed
diminished Tdt activity, while mimicking pol � with a
very short Loop1 resulted in an error-prone polymerase
activity.
Because the enzyme concentration used in the assay was

rather high (2 mM) and because we were concerned that
our results might depend on it, all activity tests were done
again at a lower enzyme concentration (500 nM). All
described above for Loop1 mutants’ results are essentially
conserved except for S383 and F385, where the reduction
of Tdt activity is stronger (Supplementary Figure S2).
This is also true for �3384/391/392.

Conferring pol k activity to the Tdt framework through
pol k Loop1 grafting (chimera)

In a recent paper Juarez and collegues (33) described how
to transfer non-templated nucleotidyltransferase activity
to pol m simply by exchanging their Loop1 in a pol m
framework. Here we report the reverse experiment,
namely the transfer of pol m template-dependent activity
onto Tdt by merely switching their Loop1. A new con-
struct was tried that involved 29 residues from pol m
in the Loop1 region (Figure 1) that were incorporated
in two steps, starting from a Tdt mutant lacking 29
residues around Loop1. Incidentally, this deletion
mutant showed little or no expression under conditions
used for all Tdt other mutant constructs and could

Table 1. Summary of Tdt mutants measured activity

Mutation (region) Observed phenotype
wild-type (wt), reduced (�),
much reduced (��) or very
much reduced (���)
Tdt activity

Effect of 1mM Co++ in
Re-establishing full (+)
or partial (+/�) template
independent Tdt-like activity
or none (�)

Remarks (The default
enzyme concentration is 2mM)

S383A (Loop1) � + More pronounced effect at 0.5 mM
T384A (Loop1) wt/� +
F385A (Loop1) � + More pronounced effect at 0.5 mM
P391L (Loop1) wt/� + Sequence as in pol m
S392A (Loop1) wt + Sequence as in pol m
D396A (Loop1) wt/� +
�1384 (Loop1) � +
�1392 (Loop1) � +
�2384/392 (Loop1) �� +
�3384/391/392 (Loop1) ���/Pol + More pronounced effect at 0.5 mM
Deletion/Loop1 Pol +/� Deletion as in pol �
Chimera/Loop1 Pol +/�
D399A (extended SD1) ���/Pol + More pronounced effect at 0.5 mM
H400A (extended SD1) � +
F401A (extended SD1) Pol � Template-dep sequence specific pol.
Q402E (SD1) �� +
Q402A (SD1) wt +
QKC=>ERS (SD1) Pol (stuck) +/� Sequence as in pol m
K403A (SD1) Pol (stuck) +/�
K403R (SD1)
C404A (SD1) wt +
F405A (extended SD1) Pol (stuck) +/�
Pol m (control) Pol +/� Control (pol m)
D473A (SD2) Pol +/� Less pronounced effect at 0.5 mM
N474A (SD2) wt/� +
H475A (SD2) �� +/�
473DNH475=>ANA (SD2) ���/Pol +/� Template-dep. if 4 nt added
473DN474=>NS (SD2) � + Sequence as in pol m
ERS+NS (SD1+SD2) Pol (stuck) +/� Sequence as in pol m
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not be tested for activity. In Figure 4A it can be seen
that the chimera is devoid of any Tdt activity. Rather,
its activity is comparable to pol m templated polymerase
activity, both in Tdt or pol m reaction buffers. We
can analyze in more details the specificity (template-
instructed) of elongation: when only one dNTP is
furnished the expected G is incorporated, but a second
G incorporation is also seen; also, depending on the
buffer, one, two or even three A can be added; overall,
the mutant makes more errors than wild-type pol mu, but

its behavior in presence of all four dNTPs is exactly
what is expected, namely it stops correctly at the end of
the template.

If one adds Co++, one sees a reactivation of the
template-independent nucleotidyltransferase activity
(Figure 4B). However, there is only partial restoration of
Tdt activity in this case, which is comparable with the
activity of wild-type pol m in the presence of Co++. The
same behavior is seen at a reduced concentration of
500 nM (Supplementary Figure S2).

Figure 3. Deletion Tdt Mutants in Loop1. (A) The activity without CoCl2 but in the presence of 4mM MgCl2 of (from left to right) wild-type Tdt,
�384, �392, the double mutant �2383/392 and triple mutant �3383/391/392 is shown for each dNTP and a mixture of all dNTPs. (B) The effect of
Co++ addition (1mM) to the reaction buffer on the activity of selected mutants described in Figure 2 and Figure 3A.
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Mutating the first ‘sequence determinant’ SD1 region
(and beyond)

The multialignement of all known pol m sequences and all
known Tdt sequences reveals two blocks of sequences
completely conserved in each sub-family but not identical
to each other [Figure 2 of (22)], which we call here the two
‘sequence determinant’ regions SD1 and SD2 (Figure 1).

The SD1 contains the QKC tripeptide, just outside of
Loop1. As it is part of our grafted sequence that confers
pol m behavior to Tdt, we decided to mutate it separately
(Figure 5A). The triple mutant QKC!ERS does incorpo-
rate the correct nucleotide (G) when in presence of dGTP,
and does not incorporate efficiently any of the three other
dNTPs. When in presence of all four dNTPs it adds only

Figure 4. Mimicking pol m and pol � with Tdt. (A) The activity without CoCl2 but in the presence of 4mM MgCl2 of wild-type Tdt and Tdt Chimera
containing the pol m Loop1, as well as the �13 mutant (as in pol �) is shown for each dNTP and a mixture of all dNTPs. (B) The effect of Co++

addition (1mM) to the reaction buffer is shown for the same mutants.
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one nucleotide, but then stops completely. Therefore we
characterize this mutant not as a pol m, but rather as a
‘stuck’ polymerase; to explain this effect, we speculate
that one of the products of the reaction (elongated
primer or PPi) may be an inhibitor or cannot be released.
Point mutations involving K403A, K403R, C404A

mutants as well as Q402A and Q402E were then examined
separately (Figure 5A). The C404A was shown to still
display a Tdt wild-type phenotype. Q402E mutant is a
Tdt with very much reduced activity but no template-
dependent polymerase behavior, while Q402A is similar
to wild type. The K403A point mutation however has a

more drastic effect and displays a ‘stuck’ polymerase phe-
notype, with partial incorporation of one G (the expected
nucleotide) or one C; then it stops. On the structural side,
the sidechain of K403 points directly into the active site,
contrary to Q402 and C404, which point away from it,
inside the b sheet. K403R phenotype is even more drastic
with clear preference for adding (several) G and C and
very few of A and T. Adding Co++ reveals template-inde-
pendent elongation activity for each separate dNTP; how-
ever, when adding all four dNTPs simultaneously
in solution, both template-independent and template-
dependent behaviors are clearly present (Supplementary

Figure 5. SD1 region mutants (QKC). (A) The activity without CoCl2 but in the presence of 4mM MgCl2 of wild-type Tdt, Q402E, Q402A, K403R,
K403A and C404A mutants is shown for each dNTP and a mixture of all dNTPs. (B) The activity without CoCl2 but in the presence of 4mM MgCl2
of Tdt wild-type, along with the triple mutant in SD1 switching QKC into ERS (as in polm), D399A, H400A, F401A and F405A mutants is shown
for each dNTP and a mixture of all dNTPs. The effect of Co++ addition (1mM) to the reaction buffer is shown in Supplementary Figure S2.
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Figure S3). Template-independent nucleotidyltransferase
activity is fully restored upon Co++ addition for Q402E,
Q402A, but only partly for K403A and QKC=>ERS
mutants (Supplementary Figure S3).

On the basis of these results it was decided to mutate
a few other residues beyond this QKC determinant
sequence, both on its left and right borders, especially as
these borders contain strictly conserved residues in the
alignment of Tdt sequences (Figure 5B).

First, the effect of the two bordering mutations F401A
and F405A has been assessed: the second mutant F405A
has a phenotype very much alike the QKC=>ERS triple
mutant, with templated polymerase behavior that stops
after one nucleotide addition, but a non-templated nucleo-
tide(s) addition activity is restored upon Co++ addition.
Surprisingly, however, the first mutant F401A also has
a truly templated polymerase phenotype; remarkably,
this time it is resistant (stable with respect) to Co++ addi-
tion. F401A is our most striking result, with maximum
change of phenotype and minimum mutation.
Additional data probing the effect of changing the tem-
plate sequence have been collected and show that this
mutant is indeed a template-dependent polymerase
(see below).

Second, we further investigated the effect of two
more mutations beyond the QKC tripeptide, involving
strictly conserved residues, namely D399A and H400A
(Figure 5B). In the presence of separate dNTPs D399A
has a much reduced Tdt-like activity (but less so with
dATP) that is almost fully restored upon Co++ addition,
while H400A mutant behaves as Tdt with a mildly reduced
activity, also fully restored upon Co++ addition. In the
presence of all four dNTPs, nucleotide addition seems to
stop after four to five steps with D399A, as expected for a
replicative polymerase given the length of the template
overhang, whereas a purely Tdt-like behavior is observed
with H400A in the presence of all four dNTPs (Supple-
mentary Figure S3). The behavior of the D399A mutant in
the presence of dATP prevents from qualifying it as a
polymerase.

The second ‘sequence determinant’ region SD2

The effect of systematic substitutions of SD2 residues was
also studied, both with the DN=> NS double mutant
(as in pol m) as well as with the three separate D473A,
N474A and H475A single mutants (Figure 6A). When
looking at the structure of Tdt, it is apparent that the
SD1 and SD2 regions are close in space (Figure 8A).

Among all these mutants, D473A is the only one with
the clearest templated polymerase phenotype, in that it
correctly stops nucleotide addition after 5 nt have been
incorporated, as dictated by the length of the template.
It also shows preference of G (expected) or C addition
(not expected) versus A or T in the presence of a single
dNTP and can add at least two of them, very much alike
the F401A mutant. However, template-independent
nucleotidyltransferase activity is partly (and only partly)
restored upon Co++ addition (Figure 6B), contrary to the
F401A mutant where this activity is not seen.

The N474A mutant is comparable to a wild-type Tdt.
H475A shows reduced Tdt activity when in presence of
each dNTP separately, with an effect that is unusually
pronounced for dATP addition, and template-length
limited synthesis when in presence of all four dNTPs
(presumably also due to inefficient dATP addition). This
is also true of the DN!NS double mutant, where in this
case it appears to be caused by the very limited incorpo-
ration of dCTP.
The effect of Co++ addition is strong for the DN/NS

double mutant, restoring an almost wild-type Tdt activity
(Figure 6B) but is very limited for D473A and H475A,
especially for the lanes where only dATP is added, or
where all four dNTPs are added.
The double mutant where both 473–475 positions where

mutated to alanines was also analyzed: it shows basal
(reduced) template-independent nucleotidyltransferase
activity, both in the absence and in the presence of
Co++ ions. When all four dNTPs are present in the reac-
tion mixture, however, it shows clear template-dependent
polymerase behavior.
The robustness of this data to the enzyme concentration

was assessed for all SD1 and SD2 regions and the results
of an activity assay when all four dNTPS are present, at
an enzyme concentration of 500 nM, are shown in
Supplementary Figure S3B. Except for a slightly different
behavior of the D399A mutant, all the previous conclu-
sions are maintained, especially concerning the F401A
mutant.

Mutating both the SD1 and SD2 regions (as in pol k)

In the absence of Co++ ions, the ERS+DS mutant (see
Table 1) displays a template-dependent reduced activity,
with some specificity: only G and C are incorporated,
when G is expected. However, the results in the presence
of all four dNTPs in solution show that the enzyme is not
very efficient. Adding Co++ ions reveals basal template-
independent polymerase activity for each separate lane
concerning each dNTP, while adding all four dNTPs
together shows clear template-dependent polymerase
behavior. One possible explanation for this behavior is
that the blunt-end product resulting from templated and
sequence-directed elongation of the primer is not a sub-
strate for this mutant (see also the 473ANA475 mutant).

Sequence specificity of nucleotide incorporation for the
chimera and F401A constructs

The sequence-dependent incorporation of nucleotide
was investigated systematically for the best constructs
obtained. In these experiments, dNTP incorporation is
studied for all 4 nt, and the templating base is varied,
while keeping everything else constant. This is shown in
Figure 7 and can be further quantified by the Q ratio
defined in ‘Materials and Methods’ section. For the chi-
mera constant we find Q=0.97, 0.96, 0.99, 0.97 for a
templating base of C, T, A, or G, respectively. For the
F401A mutant, we find Q=0.74, 0.92, 0.96, 0.96 for
the same templating bases. In both cases the sequence
specificity is very good.
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DISCUSSION

The current understanding of the unique Tdt properties
is that its lack of template-directed polymerase activ-
ity results from the sterical exclusion of the template
strand by Loop1 (22). As the closely related polm
has both a Loop1 and a template-directed polymerase
activity, it may be inferred that Loop1 structures
differ in detail in pol m and TdT, perhaps due to their
different sequences. The simplest hypothesis consistent
with all data is that pol m’s Loop1 can easily be displaced
by the incoming template strand, thereby allowing tem-
plate-based replication, whereas Tdt’s Loop1 structure
cannot.

Two constructs described here indeed confirm
that Loop1 is important in controlling the template-
independent nucleotidyltransferase or templated replicat-
ing properties of Tdt and pol m, respectively: a 13-residues
long deletion mimicking pol � and a 29-residue-long pol m
chimera construct [the reverse equivalent of the one
described in (33) for polm] indeed showed templated poly-
merase behavior.

Furthermore, the fact that Loop1 is disordered in the
presence of a regular primer–template duplex as seen in
the pol m recent structure (23) suggests that destructuring
Loop1 might be sufficient to transform Tdt into pol m.
This hypothesis was tested here, using either single-point
substitution(s) or deletion(s) at six different positions in

Figure 6. SD2 region mutant (DNH). (A) The activity without CoCl2 but in the presence of 4mM MgCl2 of Tdt wild-type, D473A, N474A and
H475A, along with the double mutant switching DNH into NSH (as in polm) or into ANA, is shown for each dNTP and a mixture of all dNTPs. (B)
The effect of Co++ addition (1mM) to the reaction buffer is shown in the lower panel.
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Loop1, which were chosen based on the crystallographic
structure of Tdt. None of the single-point substitution or
deletion tried directly in Loop1 was sufficient to switch a
Tdt into a pol m. However, there were clear indications
that increasing the number of deletions (up to three)
could severely reduce the template-independent nucleoti-
dyltransferase activity of Tdt (see also Supplementary
Figure S2).

On the structural level, it is interesting to look at the
structure of Loop1 region in pol m (PDB code 2IHM), and
to locate where exactly it becomes disordered in the elec-
tron density. The borders are (i) H369 of RSH, the equiv-
alent of the T384 in Tdt and (ii) F387 of DVF (strictly
conserved in Tdt at positions 399–401). Therefore, the
disordered part of pol m corresponds to that part of
Loop1 that is absent in pol � (Figure 1) and also the
deleted part of Loop1 that we tested here in the mutant
�13. In this context, it is worth mentioning the hypothesis
of Juarez et al. (33), made before the structures of pol m
and pol � were solved, who suggest that Loop1 is stabi-
lized in a ‘closed’ conformation in Tdt through mainly
hydrophobic interactions involving F401 (SD1), F385
(Loop1) and perhaps H475 (SD2). In other words, accord-
ing to these authors, the observed well-defined structure of
Loop1 might be more due to its anchoring to the rest of
the structure through hydrophobic interactions, rather
than due to a couple of hydrogen bonds involving T384
and S392 (22). This is indeed consistent with the work
reported here, as discussed below.

Experiments have been carried out to assess whether or
not mutations concerning the strictly conserved residues

on the border of Loop1, such as F401 (SD1), or under-
neath it, such as H475 (SD2), are able to confer a pol m
activity to a TdT framework, when using regular DNA
duplexes substrates. Here, the entire SD1 Region 399–405
has been systematically mutated.
Based on the Tdt structure and the description of

its dNTP-binding site it was expected that F405A,
K403A and D399A should have a stronger effect com-
pared to H400 and C402, as they clearly line up the
active site (Figure 8) on the same side of a b strand,
while H400 and C402 do not. This is indeed what is
observed.
More strikingly, we find that the mutation F401A in

SD1 region has a spectacular effect while F385A effect
in Loop1 is more modest but still one of the most signif-
icant effects among the Loop1 mutants, along with S383A,
in accordance with the hypothesis described in (33). The
effect of mutating F401 is puzzling as it is strictly con-
served in all known Tdt and pol m sequences and yet its
mutation is sufficient to confer a pol m phenotype to Tdt.
A possible explanation is that the hydrophobic-binding
pocket of the phenylalanine sidechain in Tdt structure
governs the overall re-entry of Loop1 into the core beta
sheet and is therefore essential for Loop1 conformation.
What was not expected at all, however, is that F401A
phenotype would be resistant to Co++ addition, because
this residue is not in direct contact with the catalytic
pocket (dNTP-binding site) nor with the primer-binding
site. Clearly F401 is far away from the two catalytic diva-
lent ions Mg++, which are thought to be exchangeable,
both by Mn++ and Co++ (41), so it is hard to imagine

Figure 7. Sequence specificity of F401A mutant and chimera construct.The incorporation of each dNTP is shown for four different oligonucleotides
differing only by their templating base. Here the enzyme concentration was 500 nM.
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how mutating it could have an influence on the modula-
tion of the catalytic activity by Co++.
In any case, it is clear from both polm and pol �

structures (PDB codes 2IHM and 2PQF) that F401 (or
its equivalent) is in a different conformation in these two
structures, compared to the one seen in Tdt: its side chain
actually occupies the site of the H475 side chain, that is in
a different rotameric state compared to what is observed
in Tdt structure. F385 is also in a different orientation in
pol m and Tdt, very close to H475. This may be interpreted
as a sign of a structural rearrangement involving at least
H475, F401, S383 and F385 during the catalytic cycle
or during the ternary complex assembly.
Looking at the structures of both pol m and pol � as a

complex with a DNA normal duplex, it is apparent that

the so-called SD1 and SD2 regions interact together more
clearly and closely in these two structures than in Tdt
(PDB code 1JMS). More precisely, in pol m H475 interacts
directly with E402 (Tdt numbering). So the systematic
mutations of residues 473–475 in the SD2 region then
seemed a natural extension of our site-directed mutagen-
esis campaign in SD1 region. Furthermore, the role of
SD2 (NEY) for pol b, as described in Figure 6 of (32),
has been clearly established as being involved with the
swinging of R258 in the RVD motif towards the catalytic
D192, in the DVD motif, thereby providing an indirect
link between the active site and the SD2 region.
However, R258 is not conserved in Tdt, pol mu, nor pol
�. Here we observe that D473A indeed has template-direc-
ted replication behavior, with H475A also showing a poly-
merase-like activity but only when all nucleotides are
added. This is again compatible with the suggestion of
Juarez et al. (33). However, the differential effect of
Co++ addition on the restoration of template-indepen-
dent nucleotidyltransferase activity in these two mutants
is difficult to explain as they are both located far away
from the catalytic divalent ions-binding sites.

At this stage, we want to stress that the work described
here involves mutating a region quite different from the
ones most studied in related polX family members, which
usually involve either the two catalytic DVD or RVD
motifs or the ALLGWTGS region (colored in magenta
in Figure 1): for instance H342 in polm and Tdt (23)
and Y505 and F506 in pol � (39). Mutations in the same
regions in Tdt also result in phenotypes that differ strongly
from the wild-type but will be reported elsewhere [see also
(36) and (40) for Tdt mutations in the DVD or RVD
regions]. We point out that the important role of SD1
and SD2 regions uncovered by the present site-directed
mutagenesis study is new but compatible with was
described earlier with pol b structures (32) and pol � simu-
lations (42).

Concerning the effect of Co++ on the activity, we
obtained five types of different phenotypes that can be
described as follows: (i) wild-type Tdt activity (ii)
decreased Tdt activity, reactivated by Co++, (iii) ‘stuck’
polymerase, reactivated to Tdt-like nucleotidyltransferase
(template-independent) by Co++, (iv) templated polymer-
ase phenotype, switched back to Tdt-like by Co++ and (v)
non-switchable templated polymerase phenotype (only
one mutant, F401). So the situation is more complicated
than the one described in Juarez et al. 2006 (33) for pol m
At this stage, the effect of Co++ is still not well under-
stood. It is known that Co++ can play the roles of both
Mg++ and Zn++; it is also known that Zn++ binding
alters mainly the primer strand-binding constant and is
not an intrinsic part of the protein (35), so it is rather
difficult to explain its differential effect on mutations
affecting residues located so far away from the known
primer strand-binding site (see for instance the mutants
S383A, F385A, F401A, F405A). In this respect, it is
worth mentioning that the preferred divalent ion for pol
� is Mn++ and that this effect is still actively studied both
experimentally (43) and computationally (44). Clearly,
pol � has a template-independent nucleotidyltransferase
activity in the presence of Mn++ divalent ions (45).

Figure 8. Impact of mutations in a 3D framework. (A) Structural con-
text of Loop1 and SD2 (green) as well as helix a14 (blue), just after the
ALLGWTGS region, with respect to dNTP-binding site. SD1 is at
the C-terminus of Loop1 and the beginning of the next b strand. (B)
3D representation of the effect of mutations. Each mutation described
in Table 1 is colored according to its effect (blue=minimum;
red=maximum).

4654 Nucleic Acids Research, 2009, Vol. 37, No. 14

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/37/14/4642/1086048 by Institut Pasteur user on 11 July 2019



In any case, our control experiments on the effect of
Co++ onto pol m nucleotidyltransferase activity are strik-
ing: on one hand they confirm the results of Juarez et al.
(33) for the effect of Mn++ addition but on the other hand
they indicate an even stronger effect for Co++ addition in
stimulating the non-templated nucleotidyltransferase
activity of pol m that is highly reminiscent of the effect
of Co++ onto Tdt activity (Supplementary Figure S1).
Altogether, our results indicate that Tdt and pol m may
be much more functionally related than previously
thought.

CONCLUSION

To summarize, the mutants generated in this work were all
inspired and guided by the Tdt three-dimensional struc-
ture (22), and concerned the region called Loop1 (and its
close vicinity). Both a chimera construct using pol m
Loop1 and a deletion of Loop1 inspired by pol � were
successfully transformed into a template-directed poly-
merase phenotype. We then tried to dissect this effect by
using site-directed mutagenesis. Surprisingly, single-point
mutants in Loop1 designed to destabilize Loop1 were
unsuccessful. Extending the mutations to zones called
SD1 and SD2 (strictly conserved but maximally different
between polm and Tdt) produced some spectacular phe-
notypes (F401, F405, D473). However, as these positions
are quite far away from the active site itself, it is rather
difficult at the present time to explain these effects by the
structure of the free protein itself (PDB code 1JMS) or any
of its published binary complexes (PDB codes 1KDH,
1KEJ). To resolve this situation, we may invoke at least
two explanations:

The conformation of Loop1 in Tdt structure may not
completely reflect the situation in solution (and may be
partly determined by the crystal packing).

There might be a substantial structural rearrangement
upon binding all substrates: this would not be uncommon
in the polX family, where poly(A) polymerase and termi-
nal uridyltransferase recent structures showed indeed an
unusual role for the primer strand in shaping the final
structure of the active site (46,47).

Further experiments will be needed in order to distin-
guish between these two hypotheses.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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33. Juárez,R., Ruiz,J.F., Nick McElhinny,S.A., Ramsden,D. and
Blanco,L. (2006) A specific loop in human DNA polymerase m
allows switching between creative and DNA-instructed synthesis.
Nucleic Acids Res., 34, 4572–4582.

34. Kato,K.-I., Moura-Gonzalves,J., Houts,G.E. and Bollum,F.J.
(1969) Deoxynucleotide-polymerizing enzymes of calf thymus
gland. II. Properties of the terminal deoxynucleotidyltransferase.
J. Biol. Chem., 242, 2780–2789.

35. Chang,L.M.S. and Bollum,F.J. (1990) Multiple roles of divalent
cation in the terminal deoxynucleotidyltransferase reaction. J. Biol.
Chem., 265, 17436–17440.

36. Yang,B., Gathy,K.N. and Coleman,M.S. (1994) Mutational
analysis of residues in the nucleotide binding domain of human
terminal deoxynucleotidyl transferase. J. Biol. Chem., 269,
11859–11868.
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