A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin et al., Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophys. J, vol.80, pp.505-515, 2001.

I. Bahar, A. R. Atilgan, and B. Erman, Direct evaluation of thermal fluctuations in proteins using a single parameter harmonic potential, Fold. Design, vol.2, pp.173-181, 1997.

I. Bahar, M. H. Cheng, J. Y. Lee, C. Kaya, and S. Zhang, Structureencoded global motions and their role in mediating protein-substrate interactions, Biophys. J, vol.109, pp.1101-1109, 2015.

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of Dengue, Nature, vol.496, pp.504-507, 2013.

O. J. Brady, P. Gething, S. Bhatt, J. Messina, J. Brownstein et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLoS Negl. Trop. Dis, vol.6, p.1760, 2012.

B. Brooks, R. Bruccoleri, and B. Olafson, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comp. Chem, vol.4, pp.187-217, 1983.

S. N. Chandrasekaran, J. Dhas, N. V. Dokholyan, and C. W. Carter, A modified path algorithm rapidly generates transition states comparable to those found by other well established algorithms, Struct. Dyn, vol.3, p.12101, 2016.

C. Chennubotla, A. J. Rader, L. W. Yang, and I. Bahar, Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies, Phys. Biol, vol.2, 2005.

M. Delarue and Y. H. Sanejouand, Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model, J. Mol. Biol, vol.320, pp.1011-1024, 2002.

P. Eastman, N. Gronbech-jensen, and S. Doniach, Simulation of protein folding by reaction path annealing, J. Chem. Phys, vol.114, p.3823, 2001.

B. Erman, The gaussian network model: precise prediction of residue fluctuations and application to binding problems, Biophys. J, vol.91, pp.3589-3599, 2006.

E. Eyal, G. Lum, and I. Bahar, The anisotropic network model web server at 2015 (anm 2.0), Bioinformatics, vol.31, pp.1487-1489, 2015.

E. Eyal, L. W. Yang, and I. Bahar, Anisotropic network model: systematic evaluation and a new web interface, Bioinformatics, vol.22, pp.2619-2627, 2006.

H. Fengand, R. Costaouec, E. Darve, and J. A. Izaguirre, A comparison of weighted ensemble and markov state model methodologies, J. Chem. Phys, vol.142, p.214113, 2015.

G. Fibriansah, T. S. Ng, V. A. Kostyuchenko, J. Lee, S. Lee et al., Structural changes in dengue virus when exposed to a temperature of 37 ?, J. Virol, vol.87, pp.7585-7592, 2013.

G. Fibriansah, J. L. Tan, S. A. Smith, R. De-alwis, T. S. Ng et al., A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins, Nat. Comm, vol.6, p.6341, 2015.

J. Franklin, P. Koehl, S. Doniach, and M. Delarue, Minactionpath: maximum likelihood trajectory for large-scale structural transitions in a coarse grained locally harmonic energy landscape, Nucl. Acids. Res, vol.35, 2007.

V. Frappier, M. Chartier, and R. Najmanovich, ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability, Nucl. Acids Res, vol.43, 2015.

P. Fromme, XFELs open a new era in structural chemical biology, Nat. Chem. Biol, vol.11, pp.895-899, 2015.

E. Fuglebakk, N. Reuter, and K. Hinsen, Evaluation of protein elastic network models based on an analysis of collective motions, J. Chem. Theory Comput, vol.9, pp.5618-5628, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02070831

G. Golub and H. Vorst, Eigenvalue computation in the 20th century, J. Comput. Applied Math, vol.123, pp.35-65, 2000.

T. Haliloglu, I. Bahar, and B. Erman, Gaussian dynamics of folded proteins, Phys. Rev. Lett, vol.79, pp.3090-3093, 1997.

K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins Struct. Func. Genet, vol.33, pp.417-429, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02159766

T. Ichiye and M. Karplus, Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins Struct. Func. Genet, vol.11, pp.205-217, 1991.

G. Karypis and V. Kumar, A fast and highly quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput, vol.20, pp.359-392, 1999.

M. K. Kim, R. L. Jernigan, and G. S. Chirikjian, Efficient generation of feasible pathways for protein conformational transitions, Biophys. J, vol.83, pp.1620-1630, 2002.

M. K. Kim, R. Jernigan, and G. Chirikjian, An elastic network model of hk97 capsid maturation, J. Struct. Biol, vol.143, pp.107-117, 2003.

S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. E. Dawid et al., Coarse-grained protein models and their applications, Chem. Rev, vol.116, pp.7898-7936, 2016.

P. Koehl, Mathematicss role in the grand challenge of deciphering the molecular basis of life, Front. Mol. Biosci, vol.1, issue.2, 2014.

D. A. Kondrashov, Q. Cui, and G. N. Phillips, Optimization and evaluation of a coarse-grained model of protein motion using X-ray crystal data, Biophys. J, vol.91, pp.2760-2767, 2006.

V. A. Kostyuchenko, P. L. Chew, T. S. Ng, and S. M. Lok, Near-atomic resolution cryo-electron microscopic structure of dengue serotype 4 virus, J. Virol, vol.88, pp.477-482, 2014.

V. A. Kostyuchenko, E. X. Lim, S. Zhang, G. Fibriansah, T. S. Ng et al., Structure of the thermally stable zika virus, Nature, vol.533, pp.425-428, 2016.

V. A. Kostyuchenko, Q. Zhang, J. L. Tan, T. S. Ng, and S. M. Lok, Immature and mature dengue serotype 1 virus structures provide insight into the maturation process, J. Virol, vol.83, pp.7700-7707, 2013.

J. Kovacs, P. Chacon, A. , and R. , Predictions of protein flexibility: first-order measures, Proteins, vol.54, pp.661-668, 2004.

D. M. Krüger, A. Ahmed, and H. Gohlke, NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins, Nucl. Acids Res, vol.40, pp.310-316, 2012.

S. Kundu, J. S. Melton, D. C. Sorenson, and G. N. Phillips, Dynamics of proteins in crystals: comparison of experiment with simple models, Biophys. J, vol.83, pp.723-732, 2002.

O. Kurkcuoglu, O. T. Turgut, S. Cansu, R. L. Jernigan, and P. Doruker, Focused functional dynamics of supramolecules by use of a mixed-resolution elastic network model, Biophys. J, vol.97, pp.1178-1187, 2009.

R. Lehoucq, D. Sorensen, Y. , and C. , ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1998.

N. Leioatts, T. D. Romo, and A. Grossfield, Elastic network models are robust to variations in formalism, J. Chem. Theory Comput, vol.8, pp.2424-2434, 2012.

M. Levitt, C. Sander, and P. Stern, Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme, J. Mol. Biol, vol.181, pp.423-447, 1985.

M. Levitt and A. Warshel, Computer simulation of protein folding, Nature, vol.253, pp.694-698, 1976.

M. Li, J. Z. Zhang, and F. Xia, A new algorithm for construction of coarse-grained sites of large biomolecules, J. Comp. Chem, vol.37, pp.795-804, 2016.

E. Lindahl, C. Azuara, P. Koehl, and M. Delarue, NORMAnDRef: visualization, deformation, and refinement of macromolecular structures based on all-atom normal mode analysis, Nucl. Acids. Res, vol.34, pp.52-56, 2006.

S. M. Lok, V. Kostyuchenko, G. E. Nybakken, H. A. Holdaway, A. B. Sukupolvi-petty et al., Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins, Nat. Struct. Mol. Biol, vol.15, pp.312-317, 2008.

J. R. López-blanco and P. Chacón, New generation of elastic network models, Curr. Opin. Struct. Biol, vol.37, pp.46-53, 2016.

S. Mahajan and Y. Sanejouand, On the relationship between lowfrequency normal modes and the large-scale conformational changes of proteins, Arch. Biochem. Biophys, vol.567, pp.59-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01677385

P. Maragakis and M. Karplus, Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase, J. Mol. Biol, vol.352, pp.807-822, 2005.

F. Meng, R. A. Badierah, H. A. Almehdar, E. M. Redwan, L. Kurgan et al., Unstructural biology of the dengue virus proteins, FEBS J, vol.282, pp.3368-3394, 2015.

D. Ming and M. Wall, Allostery in a coarse-grained model of protein dynamics, Phys. Rev. Lett, vol.95, 2005.

Y. Modis, S. Ogata, D. Clements, H. , and S. , A ligand-binding pocket in the dengue virus envelope glycoprotein, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.6986-6991, 2003.

D. M. Morens and A. S. Fauci, Dengue and hemorrhagic fever. A potential threat to public health in the United States, JAMA, vol.299, pp.214-216, 2008.

H. Na, R. L. Jernigan, and G. Song, Bridging between nma and elastic network models: preserving all-atom accuracy in coarse-grained models, PLoS Comput. Biol, vol.11, 2015.

T. Noguti and N. Go, Collective variable description of small-amplitude conformational fluctuations in a globular protein, Nature, vol.296, pp.776-778, 1982.

R. Olender and R. Elber, Calculation of classical trajectories with a very large time step: formalism and numerical examples, J. Chem. Phys, vol.105, pp.9299-9315, 1996.

L. Orellana, M. Rueda, C. Ferrer-costa, J. R. Lopez-blanco, P. Chacon et al., Approaching elastic network models to molecular dynamics flexibility, J. Chem. Theory Comput, vol.6, pp.2910-2923, 2010.

K. Peeters and A. Taormina, Group theory of icosahedral virus capsid vibrations: a top-down approach, J. Theor. Biol, vol.256, pp.607-624, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00554521

R. Perera and R. Kuhn, Structural proteomics of dengue virus, Curr. Opin. Microbiol, vol.11, pp.369-377, 2008.

P. Petrone and V. Pande, Can conformational change be described by only a few normal modes?, Biophys. J, vol.90, pp.1583-1593, 2006.

G. Polles, G. Indelicato, R. Potestio, P. Cermelli, R. Twarock et al., Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition, PLoS Comput. Biol, vol.9, p.1003331, 2013.

A. J. Rader, D. H. Vlad, and I. Bahar, Maturation dynamics of bacteriophage HK97 capsid, Structure, vol.13, pp.413-421, 2005.

S. Riniker, J. R. Allison, and W. F. Van-gunsteren, On developing coarsegrained models for biomolecular simulation: a review, Phys. Chem. Chem. Phys, vol.14, 2012.

M. Rueda, P. Chacon, and M. Orozco, Thorough validation of protein normal mode analysis: a comparative study with essential dynamics, Structure, vol.15, pp.565-575, 2007.

M. G. Saunders and G. A. Voth, Coarse-graining methods for computational biology, Annu. Rev. Biophysics, vol.42, pp.73-93, 2013.

T. Simonson and D. Perahia, Normal modes of symmetric protein assemblies. application to the tobacco mosaic virus protein disk, Biophys. J, vol.61, pp.410-427, 1992.

D. Sirohi, Z. Chen, L. Sun, T. Klose, T. Pierson et al., The 3.8 å resolution cryo-em structure of zika virus, Science, vol.352, pp.467-470, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439629

K. Suhre and Y. Sanejouand, Elnémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement, Nucl. Acids Res, vol.32, pp.610-614, 2004.

F. Tama, I. Brooks, and C. L. , The mechanism and pathway of ph induced swelling in cowpea chlorotic mottle virus, J. Mol. Biol, vol.318, pp.733-747, 2002.

F. Tama, I. Brooks, and C. L. , Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis, J. Mol. Biol, vol.345, pp.299-314, 2005.

F. Tama, F. X. Gadea, O. Marques, Y. H. Sanejouand, F. Tama et al., Building-block approach for determining lowfrequency normal modes of macromolecules, Protein Eng, vol.41, pp.1-6, 2000.

E. P. Teoh, P. Kukkaro, E. W. Teo, A. P. Lim, T. T. Tan et al., The structural basis for serotype-specific neutralization of dengue virus by a human antibody, Sci. Transl. Med, vol.4, pp.139-83, 2012.

M. Tirion, Large amplitude elastic motions in proteins from a single parameter, atomic analysis, Phys. Rev. Lett, vol.77, pp.1905-1908, 1996.

S. P. Tiwari, E. Fuglebakk, S. M. Hollup, L. Skjaerven, T. Cragnolini et al., WEBnm@ v2.0: web server and services for comparing protein flexibility, BMC Bioinformatics, vol.15, p.427, 2014.

V. Tozzini, Coarse-grained models for proteins, Curr. Opin. Struct. Biol, vol.15, pp.144-150, 2005.

H. Van-vlijmen and M. Karplus, Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry, J. Mol. Biol, vol.350, pp.528-542, 2005.

E. Vanden-eijnden and M. Heymann, The geometric minimum action method for computing minimum energy paths, J. Chem. Phys, vol.128, p.61103, 2008.

, Zika Strategic Response Framework and Joint Operations Plan, WHO, 2016.

K. Wilson, The renormalization group: critical phenomena and the kondo problem, Rev. Mod. Phys, vol.47, pp.773-840, 1975.

F. Xia, D. Tong, and L. Lu, Robust heterogeneous anisotropic elastic network model precisely reproduces the experimental b-factors of biomolecules, J. Chem. Theory Comput, vol.13, pp.3704-3714, 2013.

F. Xia, D. Tong, L. Yang, D. Wang, S. C. Hoi et al., Identifying essential pairwise interactions in elastic network model using the alpha shape theory, J. Comp. Chem, vol.35, pp.1111-1121, 2014.

L. Yang, G. Song, and R. Jernigan, Protein elastic nmodels and the ranges of cooperativity, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.12347-12352, 2009.

X. Zhang, P. Ge, X. Yu, J. Brannan, G. Bi et al., Cryo-EM structure of the mature dengue virus at 3.5 å resolution, Nat. Struct. Mol. Biol, vol.20, pp.105-110, 2012.

Y. Zhang, W. Zhang, S. Ogata, D. Clements, J. H. Strauss et al., Conformational changes of the flavivirus e glycoprotein, vol.12, pp.1607-1618, 2004.

Z. Zhang, Systematic methods for defining coarse-grained maps in large biomolecules, Adv. Exp. Med. Biol, vol.827, pp.33-48, 2015.

Z. Zhang, L. Lu, W. G. Noid, V. Krishna, J. Pfaendtner et al., A systematic methodology for defining coarse-grained sites in large biomolecules, Biophys. J, vol.95, pp.5073-5083, 2008.

Z. Zhang, K. Y. Sanbonmatsu, and G. A. Voth, Key intermolecular interactions in the e. coli 70s ribosome revealed by coarse-grained analysis, J. Am. Chem. Soc, vol.133, pp.16828-16838, 2011.

W. Zheng and S. Doniach, A comparative study of motor-protein motions by using a simple elastic-network model, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.13253-13258, 2003.

X. Zhou, W. Ren, and E. W. , Adaptive minimum action method for the study of rare events, J. Chem. Phys, vol.128, p.104111, 2008.