W. B. Coley and . Ii, Contribution to the knowledge of sarcoma, Ann Surg, vol.14, pp.199-220, 1891.

E. F. Mccarthy, The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas, Iowa Orthop J, vol.26, pp.154-158, 2006.

Y. Q. Zheng, Y. W. Naguib, and Y. Dong, Applications of bacillus Calmette-Guerin and recombinant bacillus Calmette-Guerin in vaccine development and tumor immunotherapy, Expert Rev Vaccines, vol.14, pp.1255-1275, 2015.

A. Morales, D. Eidinger, and A. W. Bruce, Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors, J Urol, vol.116, pp.180-183, 1976.

C. Pettenati and M. A. Ingersoll, Mechanisms of BCG immunotherapy and its outlook for bladder cancer, Nat Rev Urol, vol.15, pp.615-625, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01880693

J. Jiang, C. Wu, and B. Lu, Cytokine-induced killer cells promote antitumor immunity, J Transl Med, vol.11, p.83, 2013.

M. Sadelain, R. Brentjens, and I. Riviere, The basic principles of chimeric antigen receptor design, Cancer Discov, vol.3, pp.388-398, 2013.

R. L. Siegel, K. D. Miller, and A. Jemal, Cancer statistics, CA Cancer J Clin, vol.68, pp.7-30, 2018.

D. Gopalakrishnan, V. S. Koshkin, and M. C. Ornstein, Immune checkpoint inhibitors in urothelial cancer: recent updates and future outlook, Ther Clin Risk Manag, vol.14, pp.1019-1040, 2018.

R. Pearl, On the pathological relations between cancer and tuberculosis, Exp Biol Med, vol.26, pp.73-75, 1928.

I. Holmgren, Employment of B. C. G. especially in Intravenous Injection, Acta Med Scand, vol.90, pp.350-361, 1936.

D. Song,

H. D. Adolphs and H. P. Bastian, Chemoimmune prophylaxis of superficial bladder cancer, J Urol, vol.129, pp.29-32, 1983.

D. L. Lamm, D. E. Thor, and S. C. Harris, Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer, J Urol, vol.124, pp.38-40, 1980.

D. L. Lamm, D. E. Thor, and V. D. Stogdill, Bladder cancer immunotherapy, J Urol, vol.128, pp.931-935, 1982.
URL : https://hal.archives-ouvertes.fr/pasteur-01380581

S. A. Brosman, Experience with bacillus Calmette-Guerin in patients with superficial bladder carcinoma, J Urol, vol.128, pp.27-30, 1982.

P. F. Schellhammer, L. E. Ladaga, and M. B. Fillion, Bacillus Calmette-Guerin for superficial transitional cell carcinoma of the bladder, J Urol, vol.135, pp.261-264, 1986.

J. A. Martinez-pineiro, J. Leon, J. Martinez-pineiro, and L. Jr, Bacillus Calmette-Guerin versus doxorubicin versus thiotepa: a randomized prospective study in 202 patients with superficial bladder cancer, J Urol, vol.143, pp.502-506, 1990.

D. L. Lamm, B. A. Blumenstein, and E. D. Crawford, A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guerin for transitional-cell carcinoma of the bladder, N Engl J Med, vol.325, pp.1205-1209, 1991.

P. U. Malmstrom, R. J. Sylvester, and D. E. Crawford, An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer, Eur Urol, vol.56, pp.247-256, 2009.

R. Jarvinen, E. Kaasinen, and A. Sankila, Long-term efficacy of maintenance bacillus Calmette-Guerin versus maintenance mitomycin C instillation therapy in frequently recurrent TaT1 tumours without carcinoma in situ: a subgroup analysis of the prospective, randomised FinnBladder I study with a 20-year follow-up, Eur Urol, vol.56, pp.260-265, 2009.

R. J. Sylvester, M. A. Brausi, and W. J. Kirkels, Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, bacillus Calmette-Guerin, and bacillus Calmette-Guerin plus isoniazid in patients with intermediate-and high-risk stage Ta T1 urothelial carcinoma of the bladder, Eur Urol, vol.57, pp.766-773, 2010.

P. F. Shang, J. Kwong, and Z. P. Wang, Intravesical bacillus Calmette-Guerin versus epirubicin for Ta and T1 bladder cancer, Cochrane Database Syst Rev, p.6885, 2011.

D. L. Lamm, B. A. Blumenstein, and J. D. Crissman, Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study, J Urol, vol.163, pp.1124-1129, 2000.

J. Oddens, M. Brausi, and R. Sylvester, Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guerin in intermediate-and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance, Eur Urol, vol.63, pp.462-472, 2013.

B. Ehdaie, R. Sylvester, and H. W. Herr, Maintenance bacillus Calmette-Guerin treatment of non-muscle-invasive bladder cancer: a critical evaluation of the evidence, Eur Urol, vol.64, pp.579-585, 2013.

M. A. Ingersoll and M. L. Albert, From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa, Mucosal Immunol, vol.6, pp.1041-1053, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01385511

G. Redelman-sidi, M. S. Glickman, and B. H. Bochner, The mechanism of action of BCG therapy for bladder cancer -a current perspective, Nat Rev Urol, vol.11, pp.153-162, 2014.

A. Bohle, J. Gerdes, and A. J. Ulmer, Effects of local bacillus Calmette-Guerin therapy in patients with bladder carcinoma on immunocompetent cells of the bladder wall, J Urol, vol.144, pp.53-58, 1990.

S. Tsuji, M. Matsumoto, and O. Takeuchi, Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors, Infect Immun, vol.68, pp.6883-6890, 2000.

K. D. Kim, H. G. Lee, and J. K. Kim, Enhanced antigen-presenting activity and tumour necrosis factor-alpha-independent activation of dendritic cells following treatment with Mycobacterium bovis bacillus Calmette-Guerin, Immunology, vol.97, pp.626-633, 1999.

T. Higuchi, M. Shimizu, and A. Owaki, A possible mechanism of intravesical BCG therapy for human bladder carcinoma: involvement of innate effector cells for the inhibition of tumor growth, Cancer Immunol Immunother, vol.58, pp.1245-1255, 2009.

J. D. Beatty, S. Islam, and M. E. North, Urine dendritic cells: a noninvasive probe for immune activity in bladder cancer?, BJU Int, vol.94, pp.1377-1383, 2004.

C. Ayari, H. Larue, and H. Hovington, Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy, Eur Urol, vol.55, pp.1386-1396, 2009.

H. Suttmann, J. Riemensberger, and G. Bentien, Neutrophil granulocytes are required for effective bacillus Calmette-Guerin immunotherapy of bladder cancer and orchestrate local immune responses, Cancer Res, vol.66, pp.8250-8257, 2006.

S. Brandau, J. Riemensberger, and M. Jacobsen, NK cells are essential for effective BCG immunotherapy, Int J Cancer, vol.92, pp.697-702, 2001.

E. M. Garcia-cuesta, S. Lopez-cobo, and M. Alvarez-maestro, NKG2D is a key receptor for recognition of bladder cancer cells by IL-2-activated NK cells and BCG promotes NK cell activation, Front Immunol, vol.6, p.284, 2015.

T. Sonoda, K. Sugimura, and S. Ikemoto, Significance of target cell infection and natural killer cells in the anti-tumor effects of bacillus Calmette-Guerin in murine bladder cancer, Oncol Rep, vol.17, pp.1469-1474, 2007.

H. Suttmann, M. Jacobsen, and K. Reiss, Mechanisms of bacillus Calmette-Guerin mediated natural killer cell activation, J Urol, vol.172, pp.1490-1495, 2004.

T. L. Ratliff, A. Shapiro, and W. J. Catalona, Inhibition of murine bladder tumor growth by bacille Calmette-Guerin: lack of a role of natural killer cells, Clin Immunol Immunopathol, vol.41, pp.108-115, 1986.

M. H. Wang, H. D. Flad, and A. Bohle, Cellular cytotoxicity of human natural killer cells and lymphokine-activated killer cells against bladder carcinoma cell lines, Immunol Lett, vol.27, pp.191-197, 1991.

S. Prescott, K. James, and T. B. Hargreave, Intravesical Evans Strain BCG therapy -quantitative immunohistochemical analysis of the immune-response within the bladder wall, J Urol, vol.147, pp.1636-1642, 1992.

F. Saint, J. J. Patard, G. Muscatelli, and B. , Evaluation of cellular tumour rejection mechanisms in the peritumoral bladder wall after bacillus Calmette-Guerin treatment, BJU Int, vol.88, pp.602-610, 2001.

H. Takayama, K. Nishimura, and A. Tsujimura, Increased infiltration of tumor associated macrophages is associated with poor prognosis of bladder carcinoma in situ after intravesical bacillus Calmette-Guerin instillation, J Urol, vol.181, pp.1894-1900, 2009.

C. I. Liakou, S. Narayanan, N. Tang, and D. , Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human bladder cancer, Cancer Immun, vol.7, p.10, 2007.

S. Prescott, K. James, and A. Busuttil, HLA-DR expression by high grade superficial bladder cancer treated with BCG, Br J Urol, vol.63, pp.264-269, 1989.

G. F. Stefanini, E. Bercovich, and V. Mazzeo, Class I and class II HLA antigen expression by transitional cell carcinoma of the bladder: correlation with T-cell infiltration and BCG treatment, J Urol, vol.141, pp.1449-1453, 1989.

T. C. Zuiverloon, A. J. Nieuweboer, and H. Vekony, Markers predicting response to bacillus Calmette-Guerin immunotherapy in high-risk bladder cancer patients: a systematic review, Eur Urol, vol.61, pp.128-145, 2012.

F. Saint, J. J. Patard, and P. Maille, Prognostic value of a T helper 1 urinary cytokine response after intravesical bacillus Calmette-Guerin treatment for superficial bladder cancer, J Urol, vol.167, pp.364-367, 2002.

Y. Luo, X. Chen, and O. Ma, Role of Th1 and Th2 cytokines in BCG-induced IFN-gamma production: cytokine promotion and simulation of BCG effect, Cytokine, vol.21, pp.17-26, 2003.

T. L. Ratliff, J. K. Ritchey, and J. J. Yuan, T-cell subsets required for intravesical BCG immunotherapy for bladder cancer, J Urol, vol.150, pp.1018-1023, 1993.

R. Pichler, J. Fritz, and C. Zavadil, Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical bacillus Calmette-Guerin therapy in bladder cancer, Oncotarget, vol.7, pp.39916-39930, 2016.

C. Biot, C. A. Rentsch, and J. R. Gsponer, Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer, Sci Transl Med, vol.4, pp.137-172, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01402032

A. J. Vandeveer, J. K. Fallon, and R. Tighe, Systemic immunotherapy of non-muscle invasive mouse bladder cancer with avelumab, an anti-PD-L1 immune checkpoint inhibitor, Cancer Immunol Res, vol.4, pp.452-462, 2016.

K. Taniguchi, S. Koga, and M. Nishikido, Systemic immune response after intravesical instillation of bacille Calmette-Guerin (BCG) for superficial bladder cancer, Clin Exp Immunol, vol.115, pp.131-135, 1999.

D. R. Kelley, E. O. Haaff, and M. Becich, Prognostic value of purified protein derivative skin test and granuloma formation in patients treated with intravesical bacillus Calmette-Guerin, J Urol, vol.135, pp.268-271, 1986.

W. Krajewski, R. Zdrojowy, and A. Kolodziej, Re: purified protein derivative skin test reactions are associated with clinical outcomes of patients with nonmuscle invasive bladder cancer treated with induction bacillus Calmette-Guerin therapy, Urol Oncol, vol.37, pp.346-347, 2019.

N. Niwa, E. Kikuchi, and K. Matsumoto, Purified protein derivative skin test reactions are associated with clinical outcomes of patients with nonmuscle invasive bladder cancer treated with induction bacillus Calmette-Guerin therapy, Urol Oncol, vol.36, pp.77-92, 2018.

N. Niwa, E. Kikuchi, and K. Matsumoto, Purified protein derivative skin test prior to bacillus Calmette-Guerin therapy may have therapeutic impact in patients with nonmuscle invasive bladder cancer, J Urol, vol.199, pp.1446-1451, 2018.

H. Katz, E. Wassie, and M. Alsharedi, Checkpoint inhibitors: the new treatment paradigm for urothelial bladder cancer, Med Oncol, vol.34, p.170, 2017.

T. Powles, J. P. Eder, and G. D. Fine, MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer, Nature, vol.515, pp.558-562, 2014.

J. E. Rosenberg, J. Hoffman-censits, and T. Powles, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet, vol.387, pp.1909-1920, 2016.

A. Necchi, R. W. Joseph, and Y. Loriot, Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: post-progression outcomes from the phase II IMvigor210 study, Ann Oncol, vol.28, pp.3044-3050, 2017.

A. V. Balar, M. D. Galsky, and J. E. Rosenberg, Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial, Lancet, vol.389, pp.67-76, 2017.

T. Powles, I. Duran, and M. S. Van-der-heijden, Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial, Lancet, vol.391, pp.748-757, 2018.

C. Massard, M. S. Gordon, and S. Sharma, Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer, J Clin Oncol, vol.34, pp.3119-3125, 2016.

T. Powles, P. H. O'donnell, and C. Massard, Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study, JAMA Oncol, vol.3, p.172411, 2017.

C. R. Heery, G. O'sullivan-coyne, and R. A. Madan, Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial, Lancet Oncol, vol.18, pp.587-598, 2017.

M. R. Patel, J. Ellerton, and J. R. Infante, Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial, Lancet Oncol, vol.19, pp.51-64, 2018.

A. B. Apolo, J. R. Infante, and A. Balmanoukian, Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study, J Clin Oncol, vol.35, pp.2117-2124, 2017.

P. Sharma, M. K. Callahan, and P. Bono, Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial, Lancet Oncol, vol.17, pp.1590-1598, 2016.

P. Sharma, M. Retz, and A. Siefker-radtke, Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial, Lancet Oncol, vol.18, pp.312-322, 2017.

E. R. Plimack, J. Bellmunt, and S. Gupta, Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study, Lancet Oncol, vol.18, pp.212-220, 2017.

J. Bellmunt, R. De-wit, and D. J. Vaughn, Pembrolizumab as second-line therapy for advanced urothelial carcinoma, N Engl J Med, vol.376, pp.1015-1026, 2017.

A. V. Balar, D. Castellano, O. Donnell, and P. H. , First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (keynote-052): a multicentre, single-arm, phase 2 study, Lancet Oncol, vol.18, pp.1483-1492, 2017.

A. Necchi, A. Anichini, and D. Raggi, Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscleinvasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, Phase II study, J Clin Oncol, vol.36, pp.3353-3360, 2018.

V. A. Boussiotis, Molecular and biochemical aspects of the PD-1 checkpoint pathway, N Engl J Med, vol.375, pp.1767-1778, 2016.

K. Mehta, K. Patel, and R. A. Parikh, Immunotherapy in genitourinary malignancies, J Hematol Oncol, vol.10, p.95, 2017.

R. M. Chabanon, M. Pedrero, and C. Lefebvre, Mutational landscape and sensitivity to immune checkpoint blockers, Clin Cancer Res, vol.22, pp.4309-4321, 2016.

A. Snyder, T. Nathanson, and S. A. Funt, Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis, PLoS Med, vol.14, p.1002309, 2017.

P. Sharma, S. Hu-lieskovan, and J. A. Wargo, Primary, adaptive, and acquired resistance to cancer immunotherapy, Cell, vol.168, pp.707-723, 2017.

D. Song,

R. Zappasodi, J. D. Wolchok, and T. Merghoub, Strategies for predicting response to checkpoint inhibitors, Curr Hematol Malig Rep, vol.13, pp.383-395, 2018.

Y. J. Park, D. S. Kuen, and Y. Chung, Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance, Exp Mol Med, vol.50, p.109, 2018.

N. Van-dijk, S. A. Funt, and C. U. Blank, The cancer Immunogram as a framework for personalized immunotherapy in urothelial cancer, Eur Urol, vol.75, pp.435-444, 2019.

J. S. Weber, Biomarkers for checkpoint inhibition, Am Soc Clin Oncol Educ Book, vol.37, pp.205-209, 2017.

A. M. Kamat, R. Li, O. Donnell, and M. A. , Predicting response to intravesical bacillus Calmette-Guerin Immunotherapy: are we there yet? a systematic review, Eur Urol, vol.73, pp.738-748, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01659421

S. Cambier, R. J. Sylvester, and L. Collette, EORTC nomograms and risk groups for predicting recurrence, progression, and diseasespecific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1-3 years of maintenance bacillus Calmette-Guerin, Eur Urol, vol.69, pp.60-69, 2016.

J. Fernandez-gomez, R. Madero, and E. Solsona, Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model, J Urol, vol.182, pp.2195-2203, 2009.

P. U. Malmstrom, T. Hemdan, and U. Segersten, Validation of the ezrin, CK20, and Ki-67 as potential predictive markers for BCG instillation therapy of non-muscle-invasive bladder cancer, Urol Oncol, vol.35, pp.532-531, 2017.

Y. Bao, X. Tu, and T. Chang, The role of fluorescence in situ hybridization to predict patient response to intravesical Bacillus Calmette-Guerin therapy for bladder cancer: a diagnostic meta-analysis and systematic review, Medicine (Baltimore), vol.97, p.12227, 2018.

A. M. Kamat, R. J. Dickstein, and F. Messetti, Use of fluorescence in situ hybridization to predict response to bacillus Calmette-Guerin therapy for bladder cancer: results of a prospective trial, J Urol, vol.187, pp.862-867, 2012.

A. M. Kamat, D. L. Willis, and R. J. Dickstein, Novel fluorescence in situ hybridization-based definition of bacille Calmette-Guerin (BCG) failure for use in enhancing recruitment into clinical trials of intravesical therapies, BJU Int, vol.117, pp.754-760, 2016.

E. Liem, J. Baard, and E. Cauberg, Fluorescence in situ hybridization as prognostic predictor of tumor recurrence during treatment with bacillus Calmette-Guerin therapy for intermediateand high-risk non-muscleinvasive bladder cancer, Medical Oncology, vol.34, p.172, 2017.

C. Jungels, N. Martinez-chanza, and S. Albisinni, Interest of next-generation sequencing in BCG-treated high-risk bladder cancer, Prog Urol, vol.28, pp.344-350, 2018.

J. J. Meeks, B. A. Carneiro, and S. G. Pai, Genomic characterization of high-risk non-muscle invasive bladder cancer, Oncotarget, vol.7, pp.75176-75184, 2016.

E. J. Pietzak, A. Bagrodia, and E. K. Cha, Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets, Eur Urol, vol.72, pp.952-959, 2017.

S. N. Scott, I. Ostrovnaya, and C. M. Lin, Next-generation sequencing of urine specimens: a novel platform for genomic analysis in patients with non-muscle-invasive urothelial carcinoma treated with bacille Calmette-Guerin, Cancer Cytopathol, vol.125, pp.416-426, 2017.

M. Agundez, L. Grau, and J. Palou, Evaluation of the methylation status of tumour suppressor genes for predicting bacillus Calmette-Guerin response in patients with T1G3 high-risk bladder tumours, Eur Urol, vol.60, pp.131-140, 2011.

M. Alvarez-mugica, V. Cebrian, and J. M. Fernandez-gomez, Myopodin methylation is associated with clinical outcome in patients with T1G3 bladder cancer, J Urol, vol.184, pp.1507-1513, 2010.

M. Alvarez-mugica, J. M. Fernandez-gomez, and V. Cebrian, Polyamine-modulated factor-1 methylation predicts bacillus Calmette-Guerin response in patients with high-grade non-muscleinvasive bladder carcinoma, Eur Urol, vol.63, pp.364-370, 2013.

P. Husek, J. Pacovsky, and M. Chmelarova, Methylation status as a predictor of intravesical bacillus Calmette-Guerin (BCG) immunotherapy response of high grade non-muscle invasive bladder tumor, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, vol.161, pp.210-216, 2017.

H. Kitamura, T. Torigoe, and I. Honma, Effect of human leukocyte antigen class I expression of tumor cells on outcome of intravesical instillation of bacillus Calmette-Guerin immunotherapy for bladder cancer, Clin Cancer Res, vol.12, pp.4641-4644, 2006.

P. A. Videira, F. M. Calais, and M. Correia, Efficacy of bacille Calmette-Guerin immunotherapy predicted by expression of antigen-presenting molecules and chemokines, Urology, vol.74, pp.944-950, 2009.

A. Hashizume, S. Umemoto, and T. Yokose, Enhanced expression of PD-L1 in non-muscle-invasive bladder cancer after treatment with bacillus Calmette-Guerin, Oncotarget, vol.9, pp.34066-34078, 2018.

B. A. Inman, T. J. Sebo, and X. Frigola, PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression, Cancer, vol.109, pp.1499-1505, 2007.

M. F. Chevalier, A. K. Schneider, and V. Cesson, Conventional and PD-L1-expressing regulatory T cells are enriched during BCG therapy and may limit its efficacy, Eur Urol, vol.74, pp.540-544, 2018.

F. Saint, J. J. Patard, and J. Irani, Leukocyturia as a predictor of tolerance and efficacy of intravesical BCG maintenance therapy for superficial bladder cancer, Urology, vol.57, pp.617-621, 2001.

R. Nunez-nateras, E. P. Castle, and C. A. Protheroe, Predicting response to bacillus Calmette-Guerin (BCG) in patients with carcinoma in situ of the bladder, Urol Oncol, vol.32, p.30, 2014.

R. Pichler, G. Gruenbacher, and Z. Culig, Intratumoral Th2 predisposition combines with an increased Th1 functional phenotype in clinical response to intravesical BCG in bladder cancer, Cancer Immunol Immunother, vol.66, pp.427-440, 2017.

K. Qu, J. Gu, and Y. Ye, High baseline levels of interleukin-8 in leukocytes and urine predict tumor recurrence in non-muscle invasive bladder cancer patients receiving bacillus Calmette-Guerin therapy: a long-term survival analysis, Oncoimmunology, vol.6, p.1265719, 2017.

A. Salmasi, D. A. Elashoff, and R. Guo, Urinary cytokine profile to predict response to intravesical BCG with or without HS-410 therapy in patients with non-muscle invasive bladder cancer, Cancer Epidemiol Biomarkers Prev, vol.28, pp.1036-1044, 2019.

A. M. Kamat, J. Briggman, and D. L. Urbauer, Cytokine panel for response to intravesical therapy (CyPRIT): nomogram of changes in urinary cytokine levels predicts patient response to bacillus Calmette-Guerin, Eur Urol, vol.69, pp.197-200, 2016.

A. Mbeutcha, S. F. Shariat, and M. Rieken, Prognostic significance of markers of systemic inflammatory response in patients with non-muscle-invasive bladder cancer, Urol Oncol, vol.34, pp.483-417, 2016.

R. M. Samstein, C. H. Lee, and A. N. Shoushtari, Tumor mutational load predicts survival after immunotherapy across multiple cancer types, Nat Genet, vol.51, pp.202-206, 2019.

W. Hugo, J. M. Zaretsky, and L. Sun, Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma, Cell, vol.165, pp.35-44, 2016.

S. Mariathasan, S. J. Turley, and D. Nickles, TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells, Nature, vol.554, pp.544-548, 2018.

N. Mcgranahan, A. J. Furness, and R. Rosenthal, Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade, Science, vol.351, pp.1463-1469, 2016.

D. Chowell, L. Morris, and C. M. Grigg, Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy, Science, vol.359, pp.582-587, 2018.

N. Auslander, G. Zhang, and J. S. Lee, Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma, Nat Med, vol.24, pp.1545-1549, 2018.

P. C. Tumeh, C. L. Harview, and J. H. Yearley, PD-1 blockade induces responses by inhibiting adaptive immune resistance, Nature, vol.515, pp.568-571, 2014.

J. M. Taube, A. Klein, and J. R. Brahmer, Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy, Clin Cancer Res, vol.20, pp.5064-5074, 2014.

R. S. Herbst, J. C. Soria, and M. Kowanetz, Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients, Nature, vol.515, pp.563-567, 2014.

J. Larkin, V. Chiarion-sileni, and R. Gonzalez, Combined nivolumab and ipilimumab or monotherapy in untreated melanoma, N Engl J Med, vol.373, pp.23-34, 2015.

E. B. Garon, N. A. Rizvi, and R. Hui, Pembrolizumab for the treatment of non-small-cell lung cancer, N Engl J Med, vol.372, pp.2018-2028, 2015.

M. Leiserson, V. Syrgkanis, and A. Gilson, A multifactorial model of T cell expansion and durable clinical benefit in response to a PD-L1 inhibitor, PLoS One, vol.13, p.208422, 2018.

B. Weide, A. Martens, and J. C. Hassel, Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab, Clin Cancer Res, vol.22, pp.5487-5496, 2016.

C. Krieg, M. Nowicka, and S. Guglietta, High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy, Nat Med, vol.24, pp.144-153, 2018.

R. Raja, M. Kuziora, and P. Z. Brohawn, Early reduction in ctDNA predicts survival in patients with lung and bladder cancer treated with durvalumab, Clin Cancer Res, vol.24, pp.6212-6222, 2018.

L. Cabel, F. Riva, and V. Servois, Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study, Ann Oncol, vol.28, pp.1996-2001, 2017.

A. E. Frankel, L. A. Coughlin, and J. Kim, Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients, Neoplasia, vol.19, pp.848-855, 2017.

V. Gopalakrishnan, B. A. Helmink, and C. N. Spencer, The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy, Cancer Cell, vol.33, pp.570-580, 2018.

V. Gopalakrishnan, C. N. Spencer, and L. Nezi, Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients, Science, vol.359, pp.97-103, 2018.

V. Matson, J. Fessler, and R. Bao, The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients, Science, vol.359, pp.104-108, 2018.

B. Routy, L. Chatelier, E. Derosa, and L. , Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors, Science, vol.359, pp.91-97, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02126484

A. Nosrati, K. K. Tsai, and S. M. Goldinger, Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy, Br J Cancer, vol.116, pp.1141-1147, 2017.

P. C. Tumeh, M. D. Hellmann, and O. Hamid, Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC, Cancer Immunol Res, vol.5, pp.417-424, 2017.

R. W. Joseph, J. Elassaiss-schaap, and R. Kefford, Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab, Clin Cancer Res, vol.24, pp.4960-4967, 2018.

V. Anagnostou, K. N. Smith, and P. M. Forde, Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer, Cancer Discov, vol.7, pp.264-276, 2017.

J. M. Zaretsky, A. Garcia-diaz, and D. S. Shin, Mutations associated with acquired resistance to PD-1 blockade in melanoma, N Engl J Med, vol.375, pp.819-829, 2016.

S. A. Shukla, M. S. Rooney, and M. Rajasagi, Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes, Nat Biotechnol, vol.33, pp.1152-1158, 2015.

M. Sade-feldman, Y. J. Jiao, and J. H. Chen, Resistance to checkpoint blockade therapy through inactivation of antigen presentation, Nat Commun, vol.8, p.1136, 2017.

S. Koyama, E. A. Akbay, and Y. Y. Li, Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints, Nat Commun, vol.7, p.10501, 2016.

N. J. Llosa, M. Cruise, and A. Tam, The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints, Cancer Discov, vol.5, pp.43-51, 2015.

R. F. Sweis, S. Spranger, and R. Bao, Molecular drivers of the non-T-cell-Inflamed tumor microenvironment in urothelial bladder cancer, Cancer Immunol Res, vol.4, pp.563-568, 2016.

W. Peng, J. Q. Chen, and C. Liu, Loss of PTEN promotes resistance to T cell-mediated immunotherapy, Cancer Discov, vol.6, pp.202-216, 2016.

P. Jiang, S. Gu, and D. Pan, Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response, Nat Med, vol.24, pp.1550-1558, 2018.

E. Peranzoni, J. Lemoine, and L. Vimeux, Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment, Proc Natl Acad Sci U S A, vol.115, pp.4041-4050, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791995

P. A. Beavis, C. Y. Slaney, and N. Milenkovski, CD73: a potential biomarker for anti-PD-1 therapy, Oncoimmunology, vol.4, p.1046675, 2015.

X. Wu, A. Giobbie-hurder, and X. Liao, Angiopoietin-2 as a biomarker and target for immune checkpoint therapy, Cancer Immunol Res, vol.5, pp.17-28, 2017.

T. Karasaki, K. Nagayama, and H. Kuwano, An Immunogram for the cancer-immunity cycle: towards personalized immunotherapy of lung cancer, J Thorac Oncol, vol.12, pp.791-803, 2017.

C. U. Blank, J. B. Haanen, and A. Ribas, CANCER IMMUNOLOGY. The 'cancer immunogram'. Science, vol.352, pp.658-660, 2016.

L. B. Alexandrov, S. Nik-zainal, and D. C. Wedge, Signatures of mutational processes in human cancer, Nature, vol.500, pp.415-421, 2013.

M. S. Lawrence, P. Stojanov, and P. Polak, Mutational heterogeneity in cancer and the search for new cancer-associated genes, Nature, vol.499, pp.214-218, 2013.

J. Kim, D. Kwiatkowski, and D. J. Mcconkey, The Cancer Genome Atlas expression subtypes stratify response to checkpoint inhibition in advanced urothelial cancer and identify a subset of patients with high survival probability, Eur Urol, vol.75, pp.961-964, 2019.

B. W. Higgs, C. A. Morehouse, and K. Streicher, Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small cell lung carcinoma or urothelial cancer treated with durvalumab, Clin Cancer Res, vol.24, pp.3857-3866, 2018.

L. Wang, A. Saci, and P. M. Szabo, EMT-and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer, Nat Commun, vol.9, p.3503, 2018.

D. Song,

A. Anantharaman, T. Friedlander, and D. Lu, Programmed death-ligand 1 (PD-L1) characterization of circulating tumor cells (CTCs) in muscle invasive and metastatic bladder cancer patients, BMC Cancer, vol.16, p.744, 2016.

E. M. Verdegaal, N. F. De-miranda, and M. Visser, Neoantigen landscape dynamics during human melanoma-T cell interactions, Nature, vol.536, pp.91-95, 2016.

N. Riaz, J. J. Havel, and V. Makarov, Tumor and microenvironment evolution during immunotherapy with nivolumab, Cell, vol.171, pp.934-949, 2017.

A. C. Huang, M. A. Postow, and R. J. Orlowski, T-cell invigoration to tumour burden ratio associated with anti-PD-1 response, Nature, vol.545, pp.60-65, 2017.

R. Zappasodi, S. Budhu, and M. D. Hellmann, Non-conventional inhibitory CD4(+)Foxp3(-)PD-1(hi) T cells as a biomarker of immune checkpoint blockade activity, Cancer Cell, vol.33, pp.1017-1032, 2018.

A. C. Huang, R. J. Orlowski, and X. Xu, A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma, Nat Med, vol.25, pp.454-461, 2019.

P. L. Chen, W. Roh, and A. Reuben, Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade, Cancer Discov, vol.6, pp.827-837, 2016.

A. Marusyk, V. Almendro, and K. Polyak, Intra-tumour heterogeneity: a looking glass for cancer?, Nat Rev Cancer, vol.12, pp.323-334, 2012.

H. Schwarzenbach, D. S. Hoon, and K. Pantel, Cell-free nucleic acids as biomarkers in cancer patients, Nat Rev Cancer, vol.11, pp.426-437, 2011.

A. Bardelli and K. Pantel, Liquid biopsies, what we do not know (yet), Cancer Cell, vol.31, pp.172-179, 2017.

G. Siravegna, S. Marsoni, and S. Siena, Integrating liquid biopsies into the management of cancer, Nat Rev Clin Oncol, vol.14, pp.531-548, 2017.

K. Buder-bakhaya and J. C. Hassel, Biomarkers for clinical benefit of immune checkpoint inhibitor treatment-a review from the melanoma perspective and beyond, Front Immunol, vol.9, p.1474, 2018.

S. Kitano, T. Nakayama, and M. Yamashita, Biomarkers for immune checkpoint inhibitors in melanoma, Front Oncol, vol.8, p.270, 2018.

X. Hong, R. J. Sullivan, and M. Kalinich, Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy, Proc Natl Acad Sci U S A, vol.115, pp.2467-2472, 2018.

H. Bao, T. Bai, and K. Takata, High expression of carcinoembryonic antigen and telomerase reverse transcriptase in circulating tumor cells is associated with poor clinical response to the immune checkpoint inhibitor nivolumab, Oncol Lett, vol.15, pp.3061-3067, 2018.

Y. Khagi, A. M. Goodman, and G. A. Daniels, Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy, Clin Cancer Res, vol.23, pp.5729-5736, 2017.

E. Chasseuil, M. Saint-jean, and H. Chasseuil, Blood predictive biomarkers for nivolumab in advanced melanoma, Acta Derm Venereol, vol.98, pp.406-410, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02099448

Y. Fujisawa, K. Yoshino, and A. Otsuka, Baseline neutrophil to lymphocyte ratio combined with serum lactate dehydrogenase level associated with outcome of nivolumab immunotherapy in a Japanese advanced melanoma population, Br J Dermatol, vol.179, pp.213-215, 2018.

S. Diem, S. Schmid, and M. Krapf, Neutrophil-to-Lymphocyte ratio (NLR) and platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab, Lung Cancer, vol.111, pp.176-181, 2017.

G. Jeyakumar, S. Kim, and N. Bumma, Neutrophil lymphocyte ratio and duration of prior anti-angiogenic therapy as biomarkers in metastatic RCC receiving immune checkpoint inhibitor therapy, J Immunother Cancer, vol.5, p.82, 2017.

S. J. Bagley, S. Kothari, and C. Aggarwal, Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer, Lung Cancer, vol.106, pp.1-7, 2017.

A. O. Kamphorst, R. N. Pillai, and S. Yang, Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients, Proc Natl Acad Sci, vol.114, pp.4993-4998, 2017.

Y. Takeuchi, A. Tanemura, and Y. Tada, Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma, Int Immunol, vol.30, pp.13-22, 2018.

Y. Nonomura, A. Otsuka, and C. Nakashima, Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients, Oncoimmunology, vol.5, p.1248327, 2016.

P. B. Subrahmanyam, Z. Dong, and D. Gusenleitner, Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients, J Immunother Cancer, vol.6, p.18, 2018.

J. Zhou, K. M. Mahoney, and A. Giobbie-hurder, Soluble PD-L1 as a biomarker in malignant melanoma treated with checkpoint blockade, Cancer Immunol Res, vol.5, pp.480-492, 2017.

S. Morello, M. Capone, and C. Sorrentino, Soluble CD73 as biomarker in patients with metastatic melanoma patients treated with nivolumab, J Transl Med, vol.15, p.244, 2017.

Y. Oya, T. Yoshida, and H. Kuroda, Predictive clinical parameters for the response of nivolumab in pretreated advanced non-small-cell lung cancer, Oncotarget, vol.8, pp.103117-103128, 2017.

C. Maccalli, D. Giannarelli, and C. Chiarucci, Soluble NKG2D ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients, Oncoimmunology, vol.6, p.1323618, 2017.

J. S. Weber, M. Sznol, and R. J. Sullivan, A serum protein signature associated with outcome after anti-PD-1 therapy in metastatic melanoma, Cancer Immunol Res, vol.6, pp.79-86, 2018.

M. F. Sanmamed, J. L. Perez-gracia, and K. A. Schalper, Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients, Ann Oncol, vol.28, pp.1988-1995, 2017.

N. Yamazaki, Y. Kiyohara, and H. Uhara, Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma, Cancer Sci, vol.108, pp.1022-1031, 2017.

F. Bigot, E. Castanon, and C. Baldini, Prospective validation of a prognostic score for patients in immunotherapy phase I trials: the Gustave Roussy Immune Score (GRIm-Score), Eur J Cancer, vol.84, pp.212-218, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586940

G. Mathe, J. L. Amiel, and L. Schwarzenberg, Active immunotherapy for acute lymphoblastic leukaemia, Lancet, vol.1, pp.697-699, 1969.

D. L. Morton, F. R. Eilber, and E. C. Holmes, BCG immunotherapy of malignant melanoma: summary of a seven-year experience, Ann Surg, vol.180, pp.635-643, 1974.

D. L. Morton, F. R. Eilber, and R. A. Malmgren, Immunological factors which influence response to immunotherapy in malignant melanoma, Surgery, vol.68, pp.158-163, 1970.

J. J. Liu and X. Y. Duan, PA-MSHA induces apoptosis and suppresses metastasis by tumor associated macrophages in bladder cancer cells, Cancer Cell Int, vol.17, p.76, 2017.

A. M. Eggermont, M. Maio, and C. Robert, Immune checkpoint inhibitors in melanoma provide the cornerstones for curative therapies, Semin Oncol, vol.42, pp.429-435, 2015.

S. J. O'day, O. Hamid, and W. J. Urba, Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies, Cancer, vol.110, pp.2614-2627, 2007.

T. N. Schumacher and R. D. Schreiber, Neoantigens in cancer immunotherapy, Science, vol.348, pp.69-74, 2015.

D. T. Le, J. N. Uram, and H. Wang, PD-1 blockade in tumors with mismatch-repair deficiency, N Engl J Med, vol.372, pp.2509-2520, 2015.

N. A. Rizvi, M. D. Hellmann, and A. Snyder, Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer, Science, vol.348, pp.124-128, 2015.

A. Snyder, V. Makarov, and T. Merghoub, Genetic basis for clinical response to CTLA-4 blockade in melanoma, N Engl J Med, vol.371, pp.2189-2199, 2014.

S. L. Greig, Talimogene laherparepvec: first global approval, Drugs, vol.76, pp.147-154, 2016.

S. J. Brancato, K. Lewi, and P. K. Agarwal, Evolving immunotherapy strategies in urothelial cancer, Am Soc Clin Oncol Educ Book, pp.284-290, 2015.

F. Audenet, S. Isharwal, and E. K. Cha, Clonal relatedness and mutational differences between upper tract and bladder urothelial carcinoma, Clin Cancer Res, vol.25, pp.967-976, 2018.

E. Christensen, I. Nordentoft, and S. Vang, Optimized targeted sequencing of cell-free plasma DNA from bladder cancer patients, Sci Rep, vol.8, 1917.

D. H. Hovelson, A. M. Udager, and A. S. Mcdaniel, Targeted DNA and RNA sequencing of paired urothelial and squamous bladder cancers reveals discordant genomic and transcriptomic events and unique therapeutic implications, Eur Urol, vol.74, pp.741-753, 2018.

C. D. Hurst, O. Alder, and F. M. Platt, Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency, Cancer Cell, vol.32, pp.701-715, 2017.

A. G. Robertson, J. Kim, and H. Al-ahmadie, Comprehensive molecular characterization of muscle-invasive bladder cancer, Cell, vol.171, pp.540-556, 2017.

S. Roy, D. Pradhan, and W. L. Ernst, Next-generation sequencingbased molecular characterization of primary urinary bladder adenocarcinoma, Mod Pathol, vol.30, pp.1133-1143, 2017.

P. H. Abbosh and E. R. Plimack, Molecular and clinical insights into the role and significance of mutated dna repair genes in bladder cancer, Bladder Cancer, vol.4, pp.9-18, 2018.

N. Li, L. Yang, and Y. Zhang, Human papillomavirus infection and bladder cancer risk: a meta-analysis, J Infect Dis, vol.204, pp.217-223, 2011.

, ClinicalTrials.gov. Record, vol.02808143, 2018.

, Record No. 02324582, 2018.

D. Iacono, M. Cinausero, and L. Gerratana, Tumour-infiltrating lymphocytes, programmed death ligand 1 and cyclooxygenase-2 expression in skin melanoma of elderly patients: clinicopathological correlations, Melanoma Res, vol.28, pp.547-554, 2018.

E. Conde, A. Caminoa, and C. Dominguez, Aligning digital CD8(+) scoring and targeted next-generation sequencing with programmed death ligand 1 expression: a pragmatic approach in early-stage squamous cell lung carcinoma, Histopathology, vol.72, pp.270-284, 2018.

W. A. Cooper, T. Tran, and R. E. Vilain, PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma, Lung Cancer, vol.89, pp.181-188, 2015.

A. Hirai, K. Yoneda, and S. Shimajiri, Prognostic impact of programmed death-ligand 1 expression in correlation with human leukocyte antigen class I expression status in stage I adenocarcinoma of the lung, J Thorac Cardiovasc Surg, vol.155, pp.382-392, 2018.

H. Yu, Z. Chen, and K. V. Ballman, Correlation of PD-L1 expression with tumor mutation burden and gene signatures for prognosis in early-stage squamous cell lung carcinoma, J Thorac Oncol, vol.14, pp.25-26, 2018.