Skip to Main content Skip to Navigation
Journal articles

Real-Time Whole-Genome Sequencing for Surveillance of Listeria monocytogenes , France

Abstract : During 2015-2016, we evaluated the performance of whole-genome sequencing (WGS) as a routine typing tool. Its added value for microbiological and epidemiologic surveillance of listeriosis was compared with that for pulsed-field gel electrophoresis (PFGE), the current standard method. A total of 2,743 Listeria monocytogenes isolates collected as part of routine surveillance were characterized in parallel by PFGE and core genome multilocus sequence typing (cgMLST) extracted from WGS. We investigated PFGE and cgMLST clusters containing human isolates. Discrimination of isolates was significantly higher by cgMLST than by PFGE (p<0.001). cgMLST discriminated unrelated isolates that shared identical PFGE profiles and phylogenetically closely related isolates with distinct PFGE profiles. This procedure also refined epidemiologic investigations to include only phylogenetically closely related isolates, improved source identification, and facilitated epidemiologic investigations , enabling identification of more outbreaks at earlier stages. WGS-based typing should replace PFGE as the primary typing method for L. monocytogenes.
Complete list of metadatas

Cited literature [48 references]  Display  Hide  Download

https://hal-pasteur.archives-ouvertes.fr/pasteur-02171966
Contributor : Andrée Diakite <>
Submitted on : Wednesday, July 3, 2019 - 12:10:38 PM
Last modification on : Sunday, October 25, 2020 - 7:07:05 AM

Identifiers

Citation

Alexandra Moura, Mathieu Tourdjman, Alexandre Leclercq, Estelle Hamelin, Edith Laurent, et al.. Real-Time Whole-Genome Sequencing for Surveillance of Listeria monocytogenes , France. Emerging Infectious Diseases, Centers for Disease Control and Prevention, 2017, 23 (9), pp.1462-1470. ⟨10.3201/eid2309.170336⟩. ⟨pasteur-02171966⟩

Share

Metrics

Record views

367

Files downloads

869