N. A. O'leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad et al., Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation, Nucl. Acids. Res, vol.44, pp.733-745, 2016.

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucl. Acids. Res, vol.28, pp.235-242, 2000.

M. Delarue and P. Koehl, Combined approaches from physics, statistics, and computer science for ab initio protein structure prediction: Ex unitate vires (unity is strength)?, 1125.
URL : https://hal.archives-ouvertes.fr/pasteur-02170330

D. Talavera, S. Lovell, and S. Whelan, Covariation is a poor measure of molecular co-evolution, Mol. Biol. Evol, vol.32, pp.2456-2468, 2015.

I. Anishchenko, S. Ovchinnikov, H. Kamisetty, and D. Baker, Origins of coevolution between residues distant in protein 3D structures, Proc. Natl. Acad. Sci, vol.114, pp.9122-9127, 2017.

S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, and M. Weigt, Inverse statistical physics of protein sequences: A key issues review, Rep. Prog. Phys, vol.81, 2017.

M. Figliuzzi, P. Barrat-charlaix, and M. Weigt, How pairwise coevolutionary models capture the collective variability in proteins?, Mol. Biol. Evol, vol.35, pp.1018-1027, 2018.

H. Szurmant and M. Weigt, Inter-residue, inter-protein, and inter-family coevolution: Bridging the scales, Curr. Opin. Struct. Biol, vol.50, pp.26-32, 2018.

J. Schaarschmidt, B. Monastyrskyy, A. Kryshtafovych, and A. Bonvin, Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age, Proteins, vol.86, pp.51-66, 2018.

T. Hopf, C. Scharfe, J. Rodrigues, A. Green, O. Kohlbacher et al.,

F. Morcos, B. Jana, T. Hwa, and J. Onuchic, Coevolutionary signals across protein lineages help capture multiple protein conformations, Proc. Natl. Acad. Sci, vol.110, pp.20533-20538, 2013.

L. Sutto, S. Marsili, A. Valencia, and F. Gervasio, From residue coevolution to protein conformational ensembles and functional dynamics, Proc. Natl. Acad. Sci, vol.112, pp.13567-13572, 2015.

E. D. Leonardis, B. Lutz, S. Ratz, S. Cocco, R. Monasson et al., Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction, Nucl. Acids. Res, vol.43, pp.10444-10455, 2015.

C. Weinreb, A. Riesselman, J. Ingraham, T. Gross, C. Sander et al., 3D RNA and functional interactions from evolutionary couplings, Cell, vol.165, pp.963-975, 2016.

Z. Miao and E. Westhof, RNA structure: Advances and assessment of 3D structure prediction, Ann. Rev. Biophys, vol.46, pp.483-503, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02171289

A. Toth-petroczy, P. Palmedo, J. Ingraham, T. A. Hopf, B. Berger et al., Structured states of disordered proteins from genomic sequences, Cell, vol.167, pp.158-170, 2016.

T. A. Hopf, J. B. Ingraham, F. J. Poelwijk, C. P. Scharfe, M. Springer et al., Mutation effects predicted from sequence co-variation, Nat. Biotechnol, vol.35, pp.128-135, 2017.

D. Altschuh, A. Lesk, A. Bloomer, and A. Klug, Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus, J. Mol. Biol, vol.193, pp.693-707, 1987.

U. Gobel, C. Sander, R. Schneider, and A. Valencia, Correlated mutations and residue contacts in proteins, Proteins, vol.18, pp.309-317, 1994.

I. Shyndyalov, N. Kolchanov, and C. Sander, Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations?, Protein Eng, vol.7, pp.349-358, 1994.

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks et al., Direct-coupling analysis of residue coevolution captures native contacts accross many protein families, Proc. Natl. Acad. Sci, vol.108, 2011.

A. Lapedes, B. Giraud, and C. Jarzynski, Using sequence alignments to predict protein structure and stability with high accuracy, 2012.

M. Weigt, R. White, H. Szurmant, J. Hoch, and T. Hwa, Identification of direct residue contacts in proteinprotein interaction by message passing, Proc. Natl. Acad. Sci, vol.106, pp.67-72, 2009.

S. Balakrishnan, H. Kamisetty, J. Carbonell, S. I. Lee, and C. Langmead, Learning generative models for protein fold families, Proteins, vol.79, pp.1061-1078, 2011.

M. Ekeberg, C. Lovkvist, Y. Lan, M. Weigt, and E. Aurell, Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models, Phys. Rev. E, vol.87, p.12707, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01528418

D. T. Jones, D. Buchan, D. Cozzetto, and M. Pontil, PSICOV: Precise structure contact prediction using sparse inverse covariance estimation on large multiple sequence alignments, Bioinformatics, vol.28, pp.184-190, 2012.

C. Baldassi, M. Zamparo, C. Feinauer, A. Procaccini, R. Zecchina et al., Fast and accurate multivariate Gaussian modeling of protein families: Predicting residue contacts and protein interaction partners, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344551

S. French and B. Robson, What is a conservative substitution?, J. Mol. Evol, vol.19, pp.171-175, 1983.

R. Swanson, A vector representation for amino acid sequences, Bull. Math. Bio, vol.46, pp.623-639, 1984.

A. Kidera, Y. Konishi, M. Oka, T. Ooi, and H. Scheraga, Statistical analysis of the physical properties of the 20 naturally occuring amino acids, J. Prot. Chem, vol.4, pp.23-55, 1985.

R. Schwartz and M. Dayhoff, Matrices for detecting distant relationships, Atlas Protein Seq. Struct, vol.5, pp.345-352, 1978.

S. Rackovsky, Sequence physical properties encode the global organization of protein structure space, Proc. Natl. Acad. Sci, vol.106, pp.14345-14348, 2009.

S. Rackovsky, Global characteristics of protein sequences and their implications, Proc. Natl. Acad. Sci, vol.107, pp.8623-8626, 2010.

S. Rackovsky, Spectral analysis of a protein conformational switch, Phys. Rev. Lett, 2011.

H. Scheraga and S. Rackovsky, Homolog detection using global sequence properties suggests an alternate view of structural encoding in protein sequences, Proc. Natl. Acad. Sci, vol.111, pp.5225-5229, 2014.

W. Atchley, J. Zhao, A. Fernandes, and T. Druke, Solving the protein sequence metric problem, Proc. Natl. Acad. Sci, vol.102, pp.6395-6400, 2005.

J. Li and P. Koehl, 3D representations of amino acids -applications to protein sequence comparison and classification, Comput. Struct. Biotech. J, vol.11, pp.47-58, 2014.

C. Bishop, Pattern Recognition and Machine Learning, 2006.

S. Dunn, L. Wahl, and G. Gloor, Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction, Bioinformatics, vol.24, pp.333-340, 2008.

S. Kawashima and M. Kanehisa, Aaindex: Amino acid index database, Nucl. Acids. Res, vol.28, 2000.

S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katawama et al., Aaindex: Amino acid index database, progress report, Nucl. Acids. Res, vol.36, pp.202-205, 2008.

G. Orlando, D. Raimondi, and W. Vranken, Observation selection bias in contact prediction and its implications for structural bioinformatics, Sci. Rep, vol.6, 2016.

M. Ekeberg, T. Hartonen, and E. Aurell, Fast pseudolikelihood maximization for direct coupling analysis of protein structure from many homologous amino-acid sequences, J. Comput. Phys, vol.276, pp.341-356, 2014.

M. Skwark, D. Raimondi, M. Michel, and A. Elofsson, Improved contact predictions using the recognition of protein like contact patterns, PLoS Comput. Biol, vol.10, 2014.

K. Tomii and M. Kanehisa, Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins, Prot. Eng, vol.9, pp.27-36, 1996.

S. Henikoff and J. Henikoff, Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci, vol.89, pp.10915-10919, 1992.

S. Henikoff and J. Henikoff, Amino acid substitution matrices, Adv. Protein Chem, vol.54, pp.73-97, 2000.

S. Eddy, Where did the BLOSUM62 alignment score matrix come from?, Nat. Biotechnol, vol.22, pp.1035-1036, 2004.

T. Kosciolek and D. Jones, Accurate contact predictions using covariation techniques and machine learning, Proteins, vol.84, pp.145-151, 2015.

M. Dayhoff, R. Schwartz, and B. Orcutt, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Atlas Protein Seq. Struct, vol.5, pp.345-352, 1978.