Z. Mao, M. Bozzella, A. Seluanov, and V. Gorbunova, DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells, Cell Cycle, vol.7, pp.2902-2906, 2008.

W. Heyer, Biochemistry of eukaryotic homologous recombination, Top Curr Genet, vol.17, pp.95-133, 2007.

C. A. Waters, N. T. Strande, D. W. Wyatt, J. M. Pryor, and D. A. Ramsden, Nonhomologous end joining: a good solution for bad ends, DNA Repair (Amst.), vol.17, pp.39-51, 2014.

T. Iyama and D. M. Wilson, DNA repair mechanisms in dividing and non-dividing cells, DNA Repair (Amst.), vol.12, pp.620-636, 2013.

M. R. Lieber, The mechanism of human nonhomologous DNA end joining, J. Biol. Chem, vol.283, pp.1-5, 2008.

K. Yang, R. Guo, and D. Xu, Non-homologous end joining: advances and frontiers, Acta Biochim. Biophys. Sin. (Shanghai), vol.48, pp.632-640, 2016.

K. N. Mahajan, L. Gangi-peterson, D. H. Sorscher, J. Wang, K. N. Gathy et al., Association of terminal deoxynucleotidyl transferase with Ku, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.13926-13931, 1999.

S. Malu, P. De-ioannes, M. Kozlov, M. Greene, D. Francis et al., Artemis C-terminal region facilitates V(D)J recombination through its interactions with DNA Ligase IV and DNA-PKcs, J. Exp. Med, vol.209, pp.955-963, 2012.

S. Mickelsen, C. Snyder, K. Trujillo, M. Bogue, D. B. Roth et al., Modulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase, J. Immunol, vol.163, pp.834-843, 1999.

C. L. Benedict, S. Gilfillan, T. H. Thai, and J. F. Kearney, Terminal deoxynucleotidyl transferase and repertoire development, Immunol Rev, vol.175, pp.150-157, 2000.

N. R. Landau, D. G. Schatz, M. Rosa, and D. Baltimore, Increased frequency of Nregion insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector, Mol. Cell. Biol, vol.7, pp.3237-3243, 1987.

S. V. Desiderio, G. D. Yancopoulos, M. Paskind, E. Thomas, M. A. Boss et al., Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells, Nature, vol.311, pp.752-755, 1984.

K. I. Kato, J. M. Gonçalves, G. E. Houts, and F. J. Bollum, Deoxynucleotidepolymerizing enzymes of calf thymus gland. II. Properties of the terminal deoxynucleotidyltransferase, J. Biol. Chem, vol.242, pp.2780-2789, 1967.

J. Loc'h, S. Rosario, and M. Delarue, Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D), J Recombination. Structure, vol.24, pp.1452-1463, 2016.

M. J. Martin and L. Blanco, Decision-making during NHEJ: a network of interactions in human Pol? implicated in substrate recognition and end-bridging, Nucleic Acids Res, vol.42, pp.7923-7934, 2014.

S. Aoufouchi, E. Flatter, A. Dahan, A. Faili, B. Bertocci et al., Two novel human and mouse DNA polymerases of the polX family, Nucleic Acids Res, vol.28, pp.3684-3693, 2000.

O. Domínguez, J. F. Ruiz, T. Laín-de-lera, M. García-díaz, M. A. González et al., DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells, EMBO J, vol.19, pp.1731-1773, 2000.

M. Delarue, J. B. Boulé, J. Lescar, N. Expert-bezançon, N. Jourdan et al., Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase, EMBO J, vol.21, pp.427-439, 2002.

A. F. Moon, M. Garcia-diaz, K. Bebenek, B. J. Davis, X. Zhong et al., Structural insight into the substrate specificity of DNA Polymerase mu, Nat. Struct. Mol. Biol, vol.14, pp.45-53, 2007.

P. Andrade, M. J. Martín, R. Juárez, F. López-de-saro, and L. Blanco, Limited terminal transferase in human DNA polymerase mu defines the required balance between accuracy and efficiency in NHEJ, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.16203-16208, 2009.

F. Romain, I. Barbosa, J. Gouge, F. Rougeon, and M. Delarue, Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region, Nucleic Acids Res, vol.37, pp.4642-4656, 2009.

R. Juárez, J. F. Ruiz, S. A. Nick-mcelhinny, D. Ramsden, and L. Blanco, A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis, Nucleic Acids Res, vol.34, pp.4572-4582, 2006.

N. C. Brissett, M. J. Martin, R. S. Pitcher, J. Bianchi, R. Juarez et al., Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase, Mol. Cell, vol.41, pp.221-231, 2011.

J. Gouge, S. Rosario, F. Romain, F. Poitevin, P. Béguin et al., Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair, EMBO J, vol.34, pp.1126-1142, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02167413

A. F. Moon, J. M. Pryor, D. A. Ramsden, T. A. Kunkel, K. Bebenek et al., Sustained active site rigidity during synthesis by human DNA polymerase ?, 2014.

, Mol. Biol, vol.21, pp.253-260

J. Gouge, S. Rosario, F. Romain, P. Beguin, and M. Delarue, Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism, J. Mol. Biol, vol.425, pp.4334-4352, 2013.

S. Nakane, H. Ishikawa, N. Nakagawa, S. Kuramitsu, and R. Masui, The structural basis of the kinetic mechanism of a gap-filling X-family DNA polymerase that binds Mg(2+)-dNTP before binding to DNA, J. Mol. Biol, vol.417, pp.179-196, 2012.

B. D. Freudenthal, W. A. Beard, and S. H. Wilson, Structures of dNTP intermediate states during DNA polymerase active site assembly, Structure, vol.20, pp.1829-1837, 2012.

M. R. Sawaya, R. Prasad, S. H. Wilson, J. Kraut, and H. Pelletier, Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism, Biochemistry, vol.36, pp.11205-11215, 1997.

A. F. Moon, R. A. Gosavi, T. A. Kunkel, L. C. Pedersen, and K. Bebenek, Creative template-dependent synthesis by human polymerase mu, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.4530-4536, 2015.

J. M. Pryor, C. A. Waters, A. Aza, K. Asagoshi, C. Strom et al., Essential role for polymerase specialization in cellular nonhomologous end joining, Proc Natl Acad Sci U S A, vol.112, pp.4537-4582, 2015.

V. Esteban, M. J. Martin, and L. Blanco, The BRCT domain and the specific loop 1 of human Pol? are targets of Cdk2/cyclin A phosphorylation, DNA Repair (Amst.), vol.12, pp.824-834, 2013.

S. Thode, A. Schäfer, P. Pfeiffer, and W. Vielmetter, A novel pathway of DNA end-to-end joining, Cell, vol.60, pp.921-928, 1990.

D. B. Roth and J. H. Wilson, Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction, Mol. Cell. Biol, vol.6, pp.4295-4304, 1986.

C. A. Waters, N. T. Strande, J. M. Pryor, C. N. Strom, P. Mieczkowski et al., The fidelity of the ligation step determines how ends are resolved during nonhomologous end joining, Nat Commun, vol.5, p.4286, 2014.

J. Gu, H. Lu, B. Tippin, N. Shimazaki, M. F. Goodman et al., XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps, EMBO J, vol.26, pp.1010-1023, 2007.

N. Mcelhinny, S. A. Havener, J. M. Garcia-diaz, M. Juárez, R. Bebenek et al., A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining, Mol. Cell, vol.19, pp.357-366, 2005.

, DNA polymerase capable of DNA bridging and templated synthesis across strands, Curr. Opin. Struct. Biol, vol.53, pp.22-31

G. H. Gauss and M. R. Lieber, Mechanistic constraints on diversity in human V(D)J recombination, Mol. Cell. Biol, vol.16, pp.258-269, 1996.

R. J. Bienstock, W. A. Beard, and S. H. Wilson, Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members, DNA Repair (Amst.), vol.22, pp.77-88, 2014.

C. A. Gerodimos, H. H. Chang, G. Watanabe, and M. R. Lieber, Effects of DNA end configuration on XRCC4-DNA ligase IV and its stimulation of Artemis activity, J. Biol. Chem, vol.292, pp.13914-13924, 2017.

Y. Ma, U. Pannicke, K. Schwarz, and M. R. Lieber, Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination, Cell, vol.108, pp.781-794, 2002.

H. H. Chang, G. Watanabe, C. A. Gerodimos, T. Ochi, T. L. Blundell et al., Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency, Journal of Biological Chemistry, vol.291, pp.24377-24389, 2016.

W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

P. R. Evans, Scaling and assessment of data quality, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.72-82, 2006.

P. R. Evans, An introduction to data reduction: space-group determination, scaling and intensity statistics, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.282-292, 2011.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J Appl Crystallogr, vol.40, pp.658-674, 2007.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, P. Keller et al., , 2011.

J. Painter and E. A. Merritt, Optimal description of a protein structure in terms of multiple groups undergoing TLS motion, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.439-450, 2006.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera--a visualization system for exploratory research and analysis, J Comput Chem, vol.25, pp.1605-1612, 2004.