B. , Cell size distribution for the WT, the ?prkC mutant and the complemented (Comp) 763 strains. The measurement was done on cells labeled with FM4-64 and DAPI. Means and 764 errors of the means were calculated after the measurement of at least 600 cells for each 765 strain

C. , Presence of aberrant septation and anucleated minicells in ?prkC mutant cells. Fluores-767 cence microscopy of cells staining with FM4-64 and DAPI revealed the presence of aberrant 768 septum (yellow arrows) and anucleate minicells (white arrows) in the ?prkC mutant

, Figure 4. Presence of abnormal septa in the ?prkC mutant cells

, A. TEM pictures showing normal septal structure in the 630?erm (WT), the ?prkC mutant 773 and the complemented (Comp) strains. Scale bars represent, vol.100

B. , TEM pictures showing aberrant septal structure in the ?prkC mutant cells. In the right 775 panel, we can distinguish the beginning of the synthesis of two septa (white arrows) has be-776 gun near an apparent normal septum

, Figure 5. prkC deletion increases sensitivity to detergents and autolysis

A. , Resistance to SDS stress of the ?prkC mutant, the 630?erm (WT) and the complement 780 strains (Comp) was tested on BHI plates containing 0.006 % of SDS. This experiment was 781

B. , Growth of the WT strain (black circle), the ?prkC mutant (white circle) and the comple-783 mented strain (white square) in 24-well microplates containing TY medium in the presence 784 of 0.03% DOC. A growth curve without DOC is presented in Fig S3, vol.4

C. , Autolysis of the WT (black circle), ?prkC (white circle) and complemented (black 787 square) strains in the presence of 0.01% Triton X-100. The OD600nm of the samples incubated 788 at 37°C was determined every 5 min until complete cell lysis was reached, vol.4

, Sensitivity of the ?prkC mutant to antibiotics targeting cell-wall and to lyso-792 zyme

, Histograms representing the diameters of 794 growth inhibition area after 24 h of incubation on BHI plates for the 630?erm strain 795 pDIA6103 (WT, black), the ?prkC mutant pDIA6103 (medium grey), the complemented 796 strain (Comp, dark grey) and the ?prkC mutant expressing PrkC-K39A (pale grey). We used 797 antibiogram disks containing Ticarcillin 75 ?g, Amoxicillin, vol.25, p.798

, Ceftazidime 30 ?g, Cefepime 30 ?g or Erythromycin 15 ?g

, The results presented correspond to 7 experiments (Ticarcillin, Amoxicillin, Imipenem) or 4 800 experiments for cephalosporins

, 800 ?g of lysozyme was added 802 to a 6-mm disk. Histograms representing the diameter of growth inhibition measured for the 803 630?erm pDIA6103 (WT, black), the ?prkC mutant pDIA6103 (medium grey), and the 804 complemented strain (Comp, dark grey). The experiment was performed in quadruplicate, B. Sensitivity to lysozyme was determined on Pep-M plates

, Sedimentation, biofilm formation and motility of the ?prkC mutant 808 A. Motility test on 0.3% agar BHI plates. The plates shown are representatives of 3 in-809 dependent tests

, Mean values of the OD570nm measured after crystal violet staining of the mass of 811 biofilm obtained after 24

P. Spigaglia, Recent advances in the understanding of antibiotic resistance in 842 Clostridium difficile infection, Ther Adv Infect Dis, vol.3, pp.23-42, 2016.

W. K. Smits, D. Lyras, D. B. Lacy, M. H. Wilcox, and E. J. Kuijper, Clostridium difficile 844 infection, Nat Rev Dis Primers, vol.2, p.16020, 2016.

M. C. Abt, P. T. Mckenney, and E. G. Pamer, Clostridium difficile colitis: pathogenesis 846 and host defence, Nat Rev Microbiol, vol.14, pp.609-620, 2016.

J. A. Sorg, Microbial bile acid metabolic clusters: the bouncers at the bar, Cell 848 Host Microbe, vol.16, pp.551-552, 2014.

V. Pantaleon, S. Bouttier, A. P. Soavelomandroso, C. Janoir, and T. Candela, Biofilms 850 of Clostridium species, Anaerobe, vol.30, pp.193-198, 2014.

D. Paredes-sabja, A. Shen, and J. A. Sorg, Clostridium difficile spore biology: 852 sporulation, germination, and spore structural proteins, Trends Microbiol, vol.22, pp.406-853, 2014.

C. Janoir, Virulence factors of Clostridium difficile and their role during 855 infection, Anaerobe, vol.37, pp.13-24, 2016.

M. Toth, N. K. Stewart, C. Smith, and S. B. Vakulenko, Intrinsic Class D beta-857 Lactamases of Clostridium difficile, MBio, vol.9, 2018.

N. Kint, C. Janoir, M. Monot, S. Hoys, O. Soutourina et al., The alternative sigma factor sigma(B) plays a crucial role in adaptive strategies 860 of Clostridium difficile during gut infection, Environ Microbiol, vol.859, p.10, 2017.

S. F. Pereira, L. Goss, and J. Dworkin, Eukaryote-like serine/threonine kinases and 862 phosphatases in bacteria, Microbiol Mol Biol Rev, vol.75, p.11, 2011.

J. Dworkin, Ser/Thr phosphorylation as a regulatory mechanism in bacteria, 2015.

, Curr Opin Microbiol, vol.24, pp.47-52

C. Jers, B. Soufi, C. Grangeasse, J. Deutscher, and I. Mijakovic, Phosphoproteomics in 866 bacteria: towards a systemic understanding of bacterial phosphorylation networks, 867 Expert Rev Proteomics, vol.5, pp.619-627, 2008.

F. Pompeo, E. Foulquier, and A. Galinier, Impact of Serine/Threonine Protein 869 Kinases on the Regulation of Sporulation in Bacillus subtilis, Front Microbiol, vol.7, p.14, 2016.

B. Maestro, L. Novakova, D. Hesek, M. Lee, E. Leyva et al., Recognition of peptidoglycan and beta-lactam antibiotics by the extracellular 872 domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae, FEBS 873 Lett, vol.871, pp.357-363, 2011.

F. Squeglia, R. Marchetti, A. Ruggiero, R. Lanzetta, D. Marasco et al., Chemical basis of peptidoglycan 876 discrimination by PrkC, a key kinase involved in bacterial resuscitation from 877 dormancy, J Am Chem Soc, vol.133, p.16, 2011.

P. Hardt, I. Engels, M. Rausch, M. Gajdiss, H. Ulm et al., The cell wall precursor lipid II acts as a molecular 880 signal for the Ser/Thr kinase PknB of Staphylococcus aureus, Int J Med Microbiol, vol.881, p.17, 2017.

S. Manuse, A. Fleurie, L. Zucchini, C. Lesterlin, and C. Grangeasse, Role of eukaryotic-883 like serine/threonine kinases in bacterial cell division and morphogenesis, FEMS 884 Microbiol Rev, vol.40, pp.41-56, 2016.

D. A. Pensinger, A. J. Schaenzer, and J. D. Sauer, Do Shoot the Messenger: PASTA 886 Kinases as Virulence Determinants and Antibiotic Targets, Trends Microbiol, vol.887, p.19, 2017.

L. D. Banu, G. Conrads, H. Rehrauer, H. Hussain, A. E. Van-der-ploeg et al., The 889 Streptococcus mutans serine/threonine kinase, PknB, regulates competence 890 development, bacteriocin production, and cell wall metabolism, Infect Immun, vol.891, pp.2209-2220, 2010.

Y. K. Ng, M. Ehsaan, S. Philip, M. M. Collery, C. Janoir et al., Expanding the repertoire of gene tools for precise manipulation of the 894 Clostridium difficile genome: allelic exchange using pyrE alleles, PLoS One, vol.8, p.56051, 2013.

K. H. Wilson, M. J. Kennedy, and F. R. Fekety, Use of sodium taurocholate to enhance 896 spore recovery on a medium selective for Clostridium difficile, J Clin Microbiol, vol.897, p.22, 1982.

M. Dembek, R. A. Stabler, A. A. Witney, B. W. Wren, and N. F. Fairweather, 899 Transcriptional analysis of temporal gene expression in germinating Clostridium 900 difficile 630 endospores, PLoS One, vol.8, p.23, 2013.

R. P. Fagan and N. F. Fairweather, Clostridium difficile has two parallel and essential 902 Sec secretion systems, J Biol Chem, vol.286, pp.27483-27493, 2011.

S. T. Cartman, M. L. Kelly, D. Heeg, J. T. Heap, and N. P. Minton, Precise manipulation of 904 the Clostridium difficile chromosome reveals a lack of association between the tcdC 905 genotype and toxin production, Appl Environ Microbiol, vol.78, p.25, 2012.

O. A. Soutourina, M. Monot, P. Boudry, L. Saujet, C. Pichon et al., , p.907

K. Severinov, L. Bouguenec, C. Coppee, J. Y. Dupuy, B. Martin-verstraete et al., , 2013.

, Genome-wide identification of regulatory RNAs in the human pathogen Clostridium 909 difficile, PLoS Genet, vol.9, pp.1003493-910

T. D. Ho, K. B. Williams, Y. Chen, R. F. Helm, D. L. Popham et al., Clostridium 911 difficile extracytoplasmic function sigma factor sigmaV regulates lysozyme 912 resistance and is necessary for pathogenesis in the hamster model of infection, Infect Immun, vol.913, pp.2345-2355, 2014.

S. M. Mcbride and A. L. Sonenshein, The dlt operon confers resistance to cationic 915 antimicrobial peptides in Clostridium difficile, Microbiology, vol.157, p.28, 2011.

L. Saujet, M. Monot, B. Dupuy, O. Soutourina, and I. Martin-verstraete, The key 917 sigma factor of transition phase, SigH, controls sporulation, metabolism, and 918 virulence factor expression in Clostridium difficile, J Bacteriol, vol.193, p.29, 2011.

T. Dubois, Y. Tremblay, A. Hamiot, I. Martin-verstraete, J. Deschamps et al., , p.920

B. Briandet and B. Dupuy, A microbiota-generated bile salt induces biofilm 921 formation in Clostridium difficile, 2018.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of 923 image analysis, Nat Methods, vol.9, pp.671-675, 2012.

J. Peltier, P. Courtin, I. El-meouche, L. Lemee, M. P. Chapot-chartier et al., , p.925, 2011.

, Clostridium difficile has an original peptidoglycan structure with a high level of N-926 acetylglucosamine deacetylation and mainly 3-3 cross-links, J Biol Chem, vol.286, p.32

C. W. Reid, E. Vinogradov, J. Li, H. C. Jarrell, S. M. Logan et al., Structural 929 characterization of surface glycans from Clostridium difficile, Carbohydr Res, vol.354, p.33, 2012.

T. Candela and A. Fouet, Bacillus anthracis CapD, belonging to the gamma-932 glutamyltranspeptidase family, is required for the covalent anchoring of capsule to 933 peptidoglycan, Mol Microbiol, vol.57, p.34, 2005.

M. Chu, M. J. Mallozzi, B. P. Roxas, L. Bertolo, M. A. Monteiro et al., Viswanathan 935 VK, Vedantam G. 2016. A Clostridium difficile Cell Wall Glycopolymer Locus 936 Influences Bacterial Shape, Polysaccharide Production and Virulence, PLoS Pathog, vol.937, p.35

M. Lago, V. Monteil, T. Douche, J. Guglielmini, A. Criscuolo et al., , p.939

F. Norel, Proteome remodelling by the stress sigma factor RpoS/sigma(S) in 940 Salmonella: identification of small proteins and evidence for post-transcriptional 941 regulation, Sci Rep, vol.7, p.2127, 2017.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, 943 individualized p.p.b.-range mass accuracies and proteome-wide protein 944 quantification, Nat Biotechnol, vol.26, pp.1367-1372, 2008.
DOI : 10.1038/nbt.1511

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., , 2011.

, Andromeda: a peptide search engine integrated into the MaxQuant environment, J 947 Proteome Res, vol.10, pp.1794-1805

S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein et al., , 2016.

, The Perseus computational platform for comprehensive analysis of (prote)omics 950 data, Nat Methods, vol.13, p.39

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to 952 the ionizing radiation response, Proc Natl Acad Sci U S A, vol.98, p.40, 2001.

J. A. Vizcaino, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., , p.954

Y. Riverol, F. Reisinger, T. Ternent, Q. W. Xu, R. Wang et al., 955 update of the PRIDE database and its related tools, Nucleic Acids Res, vol.44, p.41, 2016.

M. Huse and J. Kuriyan, The conformational plasticity of protein kinases, Cell, vol.957, p.42, 2002.

E. Madec, A. Laszkiewicz, A. Iwanicki, M. Obuchowski, and S. Seror, Characterization 959 of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, Mol Microbiol, vol.46, p.43, 2002.

C. Morlot, L. Bayle, M. Jacq, A. Fleurie, G. Tourcier et al., Interaction of Penicillin-Binding Protein 2x and Ser/Thr 963 protein kinase StkP, two key players in Streptococcus pneumoniae R6 964 morphogenesis, Mol Microbiol, vol.90, p.44, 2013.

A. Iwanicki, K. Hinc, S. Seror, G. Wegrzyn, M. Obuchowski et al., Transcription in the 966 prpC-yloQ region in Bacillus subtilis, Arch Microbiol, vol.183, p.968, 2005.

, Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence

, Proc Natl Acad Sci U S A, vol.104, p.46

C. J. Kristich, J. L. Little, C. L. Hall, J. S. Hoff, I. M. Shah et al., A eukaryotic-like Ser/Thr 973 kinase signals bacteria to exit dormancy in response to peptidoglycan fragments, 974 Cell, vol.2, pp.486-496, 2008.

A. F. Hofmann and L. R. Hagey, Bile acids: chemistry, pathochemistry, biology, 976 pathobiology, and therapeutics, Cell Mol Life Sci, vol.65, p.49, 2008.

T. C. Northfield, I. Mccoll, J. M. Ridlon, D. J. Kang, P. B. Hylemon et al., Modulation of cell wall 982 structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like 983 serine/threonine kinase and phosphatase, Infect Immun, vol.14, p.52, 1973.

K. L. Nawrocki, E. K. Crispell, and S. M. Mcbride, Antimicrobial Peptide Resistance 985 Mechanisms of Gram-Positive Bacteria, Antibiotics (Basel), vol.3, p.53, 2014.

S. Brown, S. Maria, J. P. , J. Walker, S. Ganeshapillai et al., Wall teichoic acids of gram-positive 987 bacteria, Annu Rev Microbiol, vol.67, pp.313-336, 2008.

, Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and 990 hexaglycosyl phosphate repeating units, Carbohydr Res, vol.343, p.55

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head 992 of bacteriophage T4, Nature, vol.227, p.56, 1970.

J. A. Kirk, O. Banerji, R. P. Fagan, S. E. Willing, T. Candela et al., Clostridium difficile surface proteins are anchored to the cell wall using CWB2 997 motifs that recognise the anionic polymer PSII, Microb Biotechnol, vol.10, p.58, 2015.

D. A. Pensinger, K. M. Boldon, G. Y. Chen, W. J. Vincent, K. Sherman et al., The Listeria monocytogenes PASTA 1000, 2016.

, Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, p.1001

. Metabolism and . Virulence, PLoS Pathog, vol.12, pp.1006001-1002

R. Dias, D. Felix, M. Canica, and M. C. Trombe, The highly conserved serine threonine 1003 kinase StkP of Streptococcus pneumoniae contributes to penicillin susceptibility 1004 independently from genes encoding penicillin-binding proteins, BMC Microbiol, vol.9, p.60, 1005.

V. Pantaleon, A. P. Soavelomandroso, S. Bouttier, R. Briandet, B. Roxas et al., , p.1007

A. Collignon, C. Janoir, G. Vedantam, and T. Candela, The Clostridium difficile, p.1008, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01899052

, Protease Cwp84 Modulates both Biofilm Formation and Cell-Surface Properties, PLoS One, vol.10, p.61, 1009.

S. D. Siegel, J. Liu, H. Ton-that, A. Typas, M. Banzhaf et al., From the regulation of 1013 peptidoglycan synthesis to bacterial growth and morphology, Curr Opin Microbiol, vol.34, p.63, 1012.

F. Pompeo, J. Rismondo, A. Grundling, and A. Galinier, Investigation of the 1016 phosphorylation of Bacillus subtilis LTA synthases by the serine/threonine kinase 1017, PrkC. Sci Rep, vol.8, pp.17344-1018, 2018.

M. G. Percy and A. Grundling, Lipoteichoic acid synthesis and function in gram-1019 positive bacteria, Annu Rev Microbiol, vol.68, p.65, 2014.

D. A. Pensinger, M. T. Aliota, A. J. Schaenzer, K. M. Boldon, I. U. Ansari et al., Selective pharmacologic inhibition of a 1022 PASTA kinase increases Listeria monocytogenes susceptibility to beta-lactam 1023 antibiotics, Antimicrob Agents Chemother, vol.58, p.66, 2014.

U. S. Eggert, N. Ruiz, B. V. Falcone, A. A. Branstrom, R. C. Goldman et al., Genetic basis for activity differences between vancomycin and glycolipid 1026 derivatives of vancomycin, Science, vol.294, p.67, 1025.

C. Desbonnet, A. Tait-kamradt, M. Garcia-solache, P. Dunman, J. Coleman et al., , p.1028

L. B. Rice, Involvement of the Eukaryote-Like Kinase-Phosphatase System and a 1029 Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of 1030, 2016.

C. L. Hall, M. Tschannen, E. A. Worthey, and C. J. Kristich, IreB, a Ser/Thr kinase 1033 substrate, influences antimicrobial resistance in Enterococcus faecalis, Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding 1031 Protein Mutants in Enterococcus faecium, vol.7, p.69, 1032.

A. Fleurie, C. Cluzel, S. Guiral, C. Freton, F. Galisson et al., , p.1036

C. Grangeasse, Mutational dissection of the S/T-kinase StkP reveals crucial 1037 roles in cell division of Streptococcus pneumoniae, Mol Microbiol, vol.83, pp.746-758, 2012.