A. M. Powers and S. H. Waterman, A decade of arboviral activity-Lessons learned from the trenches, PLoS Negl. Trop. Dis, vol.11, p.5421, 2017.

S. C. Weaver and W. K. Reisen, Present and future arboviral threats, Antivir. Res, vol.85, pp.328-345, 2010.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk et al., Global trends in emerging infectious diseases, Nature, vol.451, pp.990-993, 2008.

N. D. Grubaugh, J. Weger-lucarelli, R. A. Murrieta, J. R. Fauver, S. M. Garcia-luna et al., Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching, Cell Host Microbe, vol.19, pp.481-492, 2016.

L. D. Kramer and G. D. Ebel, Dynamics of flavivirus infection in mosquitoes, Adv. Virus Res, vol.60, pp.187-232, 2003.

A. W. Franz, A. M. Kantor, A. L. Passarelli, and R. J. Clem, Tissue Barriers to Arbovirus Infection in Mosquitoes, vol.7, pp.3741-3767, 2015.

J. T. Van-mierlo, K. W. Van-cleef, and R. P. Van-rij, Defense and counterdefense in the RNAi-based antiviral immune system in insects, Methods Mol. Biol, vol.721, pp.3-22, 2011.

S. H. Merkling, R. P. Van-rij, and . Beyond-rnai, Antiviral defense strategies in Drosophila and mosquito, J. Insect Physiol, vol.59, pp.159-170, 2013.

C. D. Blair and K. E. Olson, The role of RNA interference (RNAi) in arbovirus-vector interactions, Viruses, vol.7, pp.820-843, 2015.

K. E. Olson and C. D. Blair, Arbovirus-mosquito interactions: RNAi pathway, Curr. Opin. Virol, vol.15, pp.119-126, 2015.

C. L. Donald, A. Kohl, and E. Schnettler, New Insights into Control of Arbovirus Replication and Spread by Insect RNA Interference Pathways, vol.3, pp.511-531, 2012.

P. Miesen, J. Joosten, and R. P. Van-rij, PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes, PLoS Pathog, vol.12, p.1006017, 2016.

R. Fragkoudis, G. Attarzadeh-yazdi, A. A. Nash, J. K. Fazakerley, and A. Kohl, Advances in dissecting mosquito innate immune responses to arbovirus infection, J. Gen. Virol, vol.90, pp.2061-2072, 2009.

K. M. Keene, B. D. Foy, I. Sanchez-vargas, B. J. Beaty, C. D. Blair et al., RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae, Proc. Natl. Acad. Sci, vol.101, pp.17240-17245, 2004.

C. L. Campbell, W. C. Black, A. M. Hess, and B. D. Foy, Comparative genomics of small RNA regulatory pathway components in vector mosquitoes, BMC Genom, vol.9, p.425, 2008.

I. Sanchez-vargas, J. C. Scott, B. K. Poole-smith, A. W. Franz, V. Barbosa-solomieu et al., Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway, PLoS Pathog, vol.5, p.1000299, 2009.

G. Carissimo, E. Pondeville, M. Mcfarlane, I. Dietrich, C. Mitri et al., Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota, Proc. Natl. Acad. Sci, vol.112, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01103895

I. Dietrich, X. Shi, M. Mcfarlane, M. Watson, A. Blomström et al., The Antiviral RNAi Response in Vector and Non-vector Cells against Orthobunyaviruses, PLoS Negl. Trop. Dis, vol.11, p.5272, 2017.

P. Miesen, A. Ivens, A. H. Buck, and R. P. Van-rij, Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs, PLoS Negl. Trop. Dis, vol.10, p.4452, 2016.

D. E. Brackney, J. C. Scott, F. Sagawa, J. E. Woodward, N. A. Miller et al., C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response, PLoS Negl. Trop. Dis, p.4, 2010.

E. Schnettler, C. L. Donald, S. Human, M. Watson, R. W. Siu et al., Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells, J. Gen. Virol, vol.94, pp.1680-1689, 2013.

E. M. Morazzani, M. R. Wiley, M. G. Murreddu, Z. N. Adelman, and K. Myles,

I. Lee, S. S. Ajay, J. I. Yook, H. S. Kim, S. H. Hong et al., New class of microRNA targets containing simultaneous 5?-UTR and 3?-UTR interaction sites

, Genome Res, vol.19, pp.1175-1183, 2009.

P. K. Kakumani, S. S. Ponia, V. Sood, M. Chinnappan, A. C. Banerjea et al., Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor, J. Virol, vol.87, pp.8870-8883, 2013.

S. Mukherjee and K. A. Hanley, RNA interference modulates replication of dengue virus in Drosophila melanogaster cells, BMC Microbiol, vol.10, p.127, 2010.

P. D. Maharaj, S. G. Widen, J. Huang, T. G. Wood, and S. Thangamani, Discovery of Mosquito Saliva MicroRNAs during CHIKV Infection, PLoS Negl. Trop. Dis, vol.9, p.3386, 2015.

J. Shrinet, S. Jain, J. Jain, R. K. Bhatnagar, and S. Sunil, Next Generation Sequencing Reveals Regulation of Distinct Aedes microRNAs during Chikungunya Virus Development, PLoS Negl. Trop. Dis, 2014.

J. Su, C. Li, Y. Zhang, T. Yan, X. Zhu et al., Identification of microRNAs expressed in the midgut of Aedes albopictus during dengue infection. Parasites Vectors, vol.10, p.971, 2017.

Y. Liu, F. Li, Z. Jia, Y. Zhou, H. Yan et al., Integrated analysis of miRNAs and transcriptomes in Aedes albopictus midgut reveals the differential expression profiles of immune-related genes during dengue virus serotype-2 infection, Insect Sci, vol.23, pp.377-385, 2016.

G. Zhang, M. Hussain, S. L. O'neill, and S. Asgari, Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti, Proc. Natl. Acad. Sci, vol.110, pp.10276-10281, 2013.

A. Slonchak, M. Hussain, S. Torres, S. Asgari, A. A. Khromykh et al., Expression of Mosquito MicroRNA Aae-miR-2940-5p Is Downregulated in Response to West Nile Virus Infection To Restrict Viral Replication, J. Virol, vol.88, pp.8457-8467, 2014.

S. K. Dubey, J. Shrinet, J. Jain, S. Ali, and S. Sunil, Aedes aegypti microRNA miR-2b regulates ubiquitin-related modifier to control chikungunya virus replication, Sci. Rep, vol.7, p.17666, 2017.

M. K. Isaacson, H. L. Ploegh, and . Ubiquitination, Ubiquitin-like Modifiers, and Deubiquitination in Viral Infection, Cell Host Microbe, vol.5, pp.559-570, 2009.

Y. Zhou, Y. Liu, H. Yan, Y. Li, H. Zhang et al., miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication. Parasites Vectors, vol.7, p.488, 2014.

H. Yan, Y. Zhou, Y. Liu, Y. Deng, and X. Chen, miR-252 of the Asian tiger mosquito Aedes albopictus regulates dengue virus replication by suppressing the expression of the dengue virus envelope protein, J. Med. Virol, vol.86, pp.1428-1436, 2014.

P. Yen, A. James, J. Li, C. Chen, and A. Failloux, Synthetic miRNAs induce dual arboviralresistance phenotypes in the vector mosquito Aedes aegypti, Commun. Boil, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01718640

A. Buchman, S. Gamez, M. Li, I. Antoshechkin, H. Li et al., Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs, Proc. Natl. Acad. Sci, vol.116, pp.3656-3661, 2019.

D. S. Greer, Y. Zhang, L. Stewart, L. Zhou, G. Sun et al., Virus pathogen database and analysis resource (ViPR): A comprehensive bioinformatics database and analysis resource for the coronavirus research community, Viruses, vol.4, pp.3209-3226, 2012.

B. E. Pickett, E. L. Sadat, Y. Zhang, J. M. Noronha, R. B. Squires et al., ViPR: An open bioinformatics database and analysis resource for virology research, Nucleic Acids Res, vol.40, pp.593-598, 2012.

W. Hu, F. Criscione, S. Liang, and Z. Tu, MicroRNAs of two medically important mosquito species: Aedes aegypti and Anopheles stephensi, Insect Mol. Biol, vol.24, pp.240-252, 2015.

A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander et al., MicroRNA targets in Drosophila, Genome Boil, vol.5, p.1, 2003.

M. Sturm, M. Hackenberg, D. Langenberger, D. Frishman, and . Targetspy, A supervised machine learning approach for microRNA target prediction, BMC Bioinform, vol.11, p.292, 2010.

A. Rueda, G. Barturen, R. Lebron, C. Gómez-martín, A. Alganza et al., sRNAtoolbox: An integrated collection of small RNA research tools, Nucleic Acids Res, vol.43, pp.467-473, 2015.

A. R. Quinlan and I. M. Hall, BEDTools: A flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

J. Krüger and M. Rehmsmeier, RNAhybrid: Microrna target prediction easy, fast and flexible, Nucleic Acids Res, vol.34, pp.451-454, 2006.

X. Zhang, E. Aksoy, T. Girke, A. S. Raikhel, and F. V. Karginov, Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti, Proc. Natl. Acad. Sci, vol.114, pp.1895-1903, 2017.

A. M. Powers and C. H. Logue, Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus, J. Gen. Virol, vol.88, pp.2363-2377, 2007.

K. A. Tsetsarkin, D. L. Vanlandingham, C. E. Mcgee, S. Higgs, and E. C. Holmes, A Single Mutation in Chikungunya Virus Affects Vector Specificity and Epidemic Potential, PLoS Pathog, vol.3, p.201, 2007.

M. Vazeille, S. Moutailler, D. Coudrier, C. Rousseaux, H. Khun et al., Two Chikungunya Isolates from the Outbreak of La Reunion (Indian Ocean) Exhibit Different Patterns of Infection in the Mosquito, Aedes albopictus, PLoS ONE, vol.2, p.1168, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00196860

B. Wahid, A. Ali, S. Rafique, and M. Idrees, Global expansion of chikungunya virus: Mapping the 64-year history, Int. J. Infect. Dis, vol.58, pp.69-76, 2017.

J. C. Rupp, N. N. Gebhart, K. J. Sokoloski, and R. W. Hardy, Alphavirus RNA synthesis and non-structural protein functions, J. Gen. Virol, vol.96, pp.2483-2500, 2015.

N. Vasilakis and S. C. Weaver, Chapter 1 The History and Evolution of Human Dengue Emergence, Adv. Clin. Chem, vol.72, pp.401-407, 2008.

M. G. Guzman, E. Harris, and . Dengue, Lancet, vol.385, issue.14, pp.60572-60581, 2015.

G. W. Dick, Zika virus. II. Pathogenicity and physical properties, Trans. R. Soc. Trop. Med. Hyg, vol.46, pp.521-534, 1952.

G. Dick, Paper: Epidemiological notes on some viruses isolated in Uganda (Yellow fever, Rift Valley fever, Bwamba fever, Trans. R. Soc. Trop. Med. Hyg, vol.47, pp.13-48, 1953.

K. C. Smithburn, R. M. Taylor, F. Rizk, and A. Kader, Immunity to Certain Arthropod-Borne Viruses among Indigenous Residents of Egypt, Am. J. Trop. Med. Hyg, vol.3, pp.9-18, 1954.

K. C. Smithburn, Neutralizing antibodies against certain recently isolated viruses in the sera of human beings residing in East Africa, J. Immunol, vol.69, pp.223-234, 1952.

K. C. Smithburn, J. A. Kerr, and P. B. Gatne, Neutralizing antibodies against certain viruses in the sera of residents of India, J. Immunol, vol.72, pp.248-257, 1954.

K. C. Smithburn, Neutralizing antibodies against arthropod-borne viruses in the sera of long-time residents of malaya and borneo1, Am. J. Epidemiol, vol.59, pp.157-163, 1954.

F. Macnamara, Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria, Trans. R. Soc. Trop. Med. Hyg, vol.48, pp.139-145, 1954.

W. L. Pond, Arthropod-borne virus antibodies in sera from residents of South-East Asia, Trans. R. Soc. Trop. Med. Hyg, vol.57, pp.364-371, 1963.

W. M. Hammon, W. D. Schrack, and G. E. Sather, Serological survey for a arthropod-borne virus infections in the Philippines, Am. J. Trop. Med. Hyg, vol.7, pp.323-328, 1958.

A. H. Fagbami, Zika virus infections in Nigeria: Virological and seroepidemiological investigations in Oyo State, J. Hyg, vol.83, pp.213-219, 1979.

D. L. Moore, O. R. Causey, D. E. Carey, S. Reddy, A. R. Cooke et al., Arthropod-borne viral infections of man in Nigeria, Ann. Trop. Med. Parasitol, vol.69, pp.49-64, 1964.

J. Olson, T. Ksiazek, and . Suhandiman,

, Triwibowo Zika virus, a cause of fever in Central Java, Indonesia. Trans. R. Soc. Trop. Med. Hyg, vol.75, pp.389-393, 1981.

D. I. Simpson, Zika Virus Infection in Man, Trans. R. Soc. Trop. Med. Hyg, vol.58, pp.335-338, 1964.

M. R. Duffy, T. Chen, W. T. Hancock, A. M. Powers, J. L. Kool et al., Zika Virus Outbreak on Yap Island, Federated States of Micronesia, N. Engl. J. Med, vol.360, pp.2536-2543, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00734543

V. Cao-lormeau, C. Roche, A. Teissier, E. Robin, A. Berry et al., Emerg. Infect. Dis, vol.20, pp.1085-1086, 2013.

E. Oehler, L. Watrin, P. Larre, I. Leparc-goffart, S. Lastere et al., Zika virus infection complicated by Guillain-Barre syndrome-Case report, Euro Surveill, vol.19, 2013.

G. S. Campos, A. C. Bandeira, and S. I. Sardi, Zika Virus Outbreak, Bahia, Brazil. Emerg. Infect. Dis, vol.21, pp.1885-1886, 2015.

C. Zanluca, V. C. De-melo, A. L. Mosimann, G. I. Santos, C. N. Santos et al., First report of autochthonous transmission of Zika virus in Brazil, Oswaldo Cruz, vol.110, pp.569-572, 2015.

, Geneva: World Health Organization, Zika virus microcephaly and GuillainBarré syndrome, 2016.

C. G. Victora, L. Schuler-faccini, A. Matijasevich, E. Ribeiro, A. Pessoa et al., Microcephaly in Brazil: How to interpret reported numbers? Lancet, vol.387, pp.621-624, 2016.

M. Hennessey, M. Fischer, and J. E. Staples, Zika Virus Spreads to New Areas -Region of the Americas, MMWR Morb. Mortal. Wkly. Rep, vol.65, pp.55-58, 2015.

O. Faye, C. C. Freire, A. Iamarino, O. Faye, J. V. De-oliveira et al., Molecular Evolution of Zika Virus during Its Emergence in the 20th Century, PLoS Negl. Trop. Dis, 2014.

L. R. Petersen, D. J. Jamieson, A. M. Powers, M. A. Honein, and . Virus, N. Engl. J. Med, vol.374, pp.1552-1563, 2016.

A. D. Haddow, A. J. Schuh, C. Y. Yasuda, M. R. Kasper, V. Heang et al., Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage, PLoS Negl. Trop. Dis, vol.6, p.1477, 2012.

K. Etebari, S. Asad, G. Zhang, and S. Asgari, Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection, PLoS Negl. Trop. Dis, vol.10, p.5069, 2016.

N. Hibio, K. Hino, E. Shimizu, and Y. Nagata, Ui-Tei, K. Stability of miRNA 5?terminal and seed regions is correlated with experimentally observed miRNA-mediated silencing efficacy, Sci. Rep, vol.2, p.996, 2012.

N. Pinzón, B. Li, L. Martinez, A. Sergeeva, J. Presumey et al., microRNA target prediction programs predict many false positives, Genome Res, vol.27, pp.234-245, 2017.

M. Hammell, D. Long, L. Zhang, A. Lee, C. S. Carmack et al., mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts, Nat. Methods, vol.5, pp.813-819, 2008.

M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal, The role of site accessibility in microRNA target recognition, Nat. Genet, vol.39, pp.1278-1284, 2007.

O. S. Akbari, I. Antoshechkin, H. Amrhein, B. Williams, R. Diloreto et al., The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3 (Bethesda), vol.3, pp.1493-1509, 2013.

S. Li, E. Mead, S. Liang, and Z. Tu, Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs, BMC Genom, vol.10, p.581, 2009.

J. G. Mayoral, K. Etebari, M. Hussain, A. A. Khromykh, S. Asgari et al., Infection Modifies the Profile, Shuttling and Structure of MicroRNAs in a Mosquito Cell Line, PLoS ONE, vol.9, p.96107, 2014.

T. K. Scheel, J. M. Luna, M. Liniger, E. Nishiuchi, K. Rozen-gagnon et al., A broad RNA virus survey reveals both miRNA dependence and functional sequestration, Cell Host Microbe, vol.19, pp.409-423, 2016.

D. W. Trobaugh and W. B. Klimstra, MicroRNA Regulation of RNA Virus Replication and Pathogenesis, Trends Mol. Med, vol.23, pp.80-93, 2017.

D. W. Trobaugh, C. L. Gardner, C. Sun, A. D. Haddow, E. Wang et al., RNA viruses can hijack vertebrate microRNAs to suppress innate immunity, Nature, vol.506, pp.245-248, 2014.

J. Huang, F. Wang, E. Argyris, K. Chen, Z. Liang et al., Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes, Nat. Med, vol.13, pp.1241-1247, 2007.

R. Nathans, C. Chu, A. K. Serquina, C. Lu, H. Cao et al., Cellular MicroRNA and P Bodies Modulate Host-HIV-1 Interactions, Mol. Cell, vol.34, pp.696-709, 2009.

B. Wen, H. Dai, Y. Yang, Y. Zhuang, and R. Sheng, MicroRNA-23b Inhibits Enterovirus 71 Replication through Downregulation of EV71 VPl Protein, Intervirology, vol.56, 0200.

Z. Zheng, X. Ke, M. Wang, S. He, Q. Li et al., Human MicroRNA hsamiR-296-5p Suppresses Enterovirus 71 Replication by Targeting the Viral Genome, J. Virol, vol.87, pp.5645-5656, 2013.

X. T. Bai and C. Nicot, miR-28-3p Is a Cellular Restriction Factor That Inhibits Human T Cell Leukemia Virus, Type 1 (HTLV-1) Replication and Virus Infection*, J. Boil. Chem, vol.290, pp.5381-5390, 2015.

C. H. Lecellier, P. Dunoyer, K. Arar, J. Lehmann-che, S. Eyquem et al., A cellular microRNA mediates antiviral defense in human cells, Science, vol.308, pp.557-560, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02106464

K. D. Conrad, F. Giering, C. Erfurth, A. Neumann, C. Fehr et al., microRNA-122 Dependent Binding of Ago2 Protein to Hepatitis C Virus RNA Is Associated with Enhanced RNA Stability and Translation Stimulation, PLoS ONE, issue.8, p.56272, 2013.

C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA, © 2019 by the authors. Licensee MDPI, vol.309, pp.1577-1581, 2005.