C. Sahlmann, B. J. Sutherland, T. M. Kortner, B. F. Koop, A. Krogdahl et al., Early response of gene expression in the distal intestine of Atlantic salmon (Salmo saar L.) during the development of soybean meal induced enteritis, Fish Shellfish Immunol, vol.34, pp.599-609, 2013.

Å. Krogdahl, K. Gajardo, T. M. Kortner, M. Penn, M. Gu et al., Soya saponins induce enteritis in Atlantic Salmon (Salmo salar L.), J Agric Food Chem, vol.63, pp.3887-902, 2015.

M. Gu, Q. Jia, Z. Zhang, N. Bai, X. Xu et al., Soya-saponins induce intestinal inflammation and barrier dysfunction in juvenile turbot (Scophthalmus maximus), Fish Shellfish Immunol, vol.77, pp.264-72, 2018.

J. C. Brazil, N. A. Louis, and C. A. Parkos, The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease, Inflamm Bowel Dis, vol.19, pp.1556-65, 2013.

N. Kamada, T. Hisamatsu, S. Okamoto, H. Chinen, T. Kobayashi et al., Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-? axis, J Clin Invest, vol.118, pp.2269-80, 2008.

A. L. Hart, A. Ho, R. J. Rigby, S. J. Bell, A. V. Emmanuel et al., Characteristics of intestinal dendritic cells in inflammatory bowel diseases, Gastroenterology, vol.129, pp.50-65, 2005.

A. Geremia, P. Biancheri, P. Allan, and G. R. Corazza, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease, Autoimmun Rev, vol.13, pp.3-10, 2014.

I. Raphael, S. Nalawade, T. N. Eagar, and T. G. Forsthuber, T cell subsets and their signature cytokines in autoimmune and inflammatory diseases, Cytokine, vol.74, pp.5-17, 2015.

T. Caza and S. Landas, Functional and phenotypic plasticity of CD4(+) T cell subsets, Biomed Res Int, p.521957, 2015.

R. E. Hoeppli, K. G. Macdonald, M. K. Levings, and L. Cook, How antigen specificity directs regulatory T-cell function: self, foreign and engineered specificity, HLA, vol.88, pp.3-13, 2016.

C. G. Mayne and C. B. Williams, Induced and natural regulatory T cells in the development of inflammatory bowel disease, Inflamm Bowel Dis, vol.19, pp.1772-88, 2013.

O. J. Harrison and F. M. Powrie, Regulatory T cells and immune tolerance in the intestine, Cold Spring Harb Perspect Biol, vol.5, 2013.

G. Bouma and W. Strober, The immunological and genetic basis of inflammatory bowel disease, Nat Rev Immunol, vol.3, pp.521-554, 2003.

V. Valatas, G. Bamias, and G. Kolios, Experimental colitis models: insights into the pathogenesis of inflammatory bowel disease and translational issues, Eur J Pharmacol, vol.759, pp.253-64, 2015.

F. Cominelli, K. O. Arseneau, A. Rodriguez-palacios, and T. T. Pizarro, Uncovering pathogenic mechanisms of inflammatory bowel disease using mouse models of Crohn's disease-like ileitis: what is the right model?, Cell Mol Gastroenterol Hepatol, vol.4, pp.19-32, 2017.

E. A. Harvie and A. Huttenlocher, Neutrophils in host defense: new insights from zebrafish, J Leukoc Biol, vol.98, pp.523-560, 2015.

B. Bajoghli, Evolution and function of chemokine receptors in the immune system of lower vertebrates, Eur J Immunol, vol.43, pp.1686-92, 2013.

B. Novoa and A. Figueras, Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases, Adv Exp Med Biol, vol.946, pp.253-75, 2012.

N. D. Meeker and N. S. Trede, Immunology and zebrafish: spawning new models of human disease, Dev Comp Immunol, vol.32, pp.745-57, 2008.

S. A. Renshaw and N. S. Trede, A model 450 million year in the making: zebrafish and vertebrate immunity, Dis Model Mech, vol.5, pp.38-47, 2012.

M. Nguyen-chi, B. Laplace-builhe, J. Travnickova, L. , P. Tejedor et al., Identification of polarized macrophage subsets in zebrafish, Elife, vol.4, p.7288, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01834168

K. N. Wallace, S. Akhter, E. M. Smith, K. Lorent, and M. Pack, Intestinal growth and differentiation in zebrafish, Mech Dev, vol.122, pp.157-73, 2005.

S. Brugman, K. Y. Liu, D. Lindenbergh-kortleve, J. N. Samsom, G. T. Furuta et al., Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota, Gastroenterology, vol.137, pp.1757-67, 2009.

S. H. Oehlers, M. V. Flores, K. S. Okuda, C. J. Hall, K. E. Crosier et al., A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents, Dev Dyn, vol.240, pp.288-98, 2011.

S. H. Oehlers, M. V. Flores, C. J. Hall, K. S. Okuda, J. O. Sison et al., Chemically induced intestinal damage models in zebrafish larvae, Zebrafish, vol.10, pp.184-93, 2013.

M. I. Hedrera, J. A. Galdames, M. F. Jimenez-reyes, A. E. Reyes, R. Avendaño-herrera et al., Soybean meal induces intestinal inflammation in zebrafish larvae, PLoS ONE, vol.8, 2013.

M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of the Zebrafish (Danio rerio, 1994.

D. M. Langenau, A. A. Ferrando, D. Traver, J. L. Kutok, J. P. Hezel et al., In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish, Proc Natl Acad Sci, vol.101, pp.7369-74, 2004.

C. Hall, M. V. Flores, T. Storm, K. Crosier, and P. Crosier, The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish, BMC Dev Biol, vol.7, p.42, 2007.

E. A. Harvie, J. M. Green, M. N. Neely, and A. Huttenlocher, Innate immune response to Streptococcus iniae infection in zebrafish larvae, Infect Immun, vol.81, pp.110-131, 2013.

L. Petrie-hanson, C. Hohn, and L. Hanson, Characterization of rag1 mutant zebrafish leukocytes, BMC Immunol, 2009.

P. Haffter, M. Granato, M. Brand, M. C. Mullins, and M. Hammerschmidt, The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio, Development, vol.123, pp.1-36, 1996.

C. G. Feijóo, A. Sarrazin, M. L. Allende, and A. Glavic, Cysteine-serinerich nuclear protein 1), Axud1/Csrnp1, is essential for cephalic neural progenitor proliferation and survival in zebrafish, Dev Dynam, vol.238, pp.2034-2077, 2009.

J. T. Neal, T. S. Peterson, M. L. Kent, and K. H. Guillemin, pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model, Dis Model Mech, vol.6, 2013.

J. F. Rawls, B. S. Samuel, and J. I. Gordon, Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota, Proc Natl Acad Sci, vol.101, pp.4596-601, 2004.

S. Brugman, The zebrafish as a model to study intestinal inflammation, Dev Comp Immunol, vol.64, pp.82-92, 2016.

J. T. Dobson, J. Seibert, E. M. Teh, S. Da'as, R. B. Fraser et al., Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination, Blood, vol.112, pp.2969-72, 2008.

J. A. Yoder, Investigating the morphology, function and genetics of cytotoxic cells in bony fish, Comp Biochem Physiol C Toxicol Pharmacol, vol.138, pp.271-80, 2004.

M. Bagnat, I. D. Cheung, K. E. Mostov, and D. Y. Stainier, Genetic control of single lumen formation in the zebrafish gut, Nat Cell Biol, vol.9, pp.954-60, 2007.

O. Wéra, P. Lancellotti, and C. Oury, The dual role of neutrophils in inflammatory bowel diseases, J Clin Med, vol.5, p.118, 2016.

C. C. Bain and A. M. Mowat, Macrophages in intestinal homeostasis and inflammation, Immunol Rev, vol.260, pp.102-119, 2014.

G. Boeckxstaens, Mast cells and inflammatory bowel disease, Curr Opin Pharmacol, vol.25, pp.45-54, 2015.

C. C. Bain, C. L. Scott, H. Uronen-hansson, S. Gudjonsson, O. Jansson et al., Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors, Mucosal Immunol, vol.6, pp.498-510, 2013.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

C. Qu, E. W. Edwards, F. Tacke, V. Angeli, J. Llodra et al., Role of CCR8 and other chemokine pathways in the migration of monocytederived dendritic cells to lymph nodes, J Exp Med, vol.200, pp.1231-1272, 2004.

Y. Tian, J. Xu, S. Feng, S. He, S. Zhao et al., The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells, J Exp Med, vol.214, pp.3347-60, 2017.

P. P. Hernández, P. M. Strzelecka, E. I. Athanasiadis, D. Hall, A. F. Robalo et al., Single-cell transcriptional analysis reveals ILC-like cells in zebrafish, Sci Immunol, vol.3, p.5265, 2018.

P. P. Hernández, T. Mahlakoiv, I. Yang, V. Schwierzeck, N. Nguyen et al., Interferon-? and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection, Nat Immunol, vol.16, pp.698-707, 2015.

L. A. Fouser, J. F. Wright, K. Dunussi-joannopoulos, and M. Collins, Th17 cytokines and their emerging roles in inflammation and autoimmunity, Immunol Rev, vol.226, pp.87-102, 2008.

J. Gálvez, Role of Th17 cells in the pathogenesis of human IBD, ISRN Inflamm, p.928461, 2014.

A. Ueno, A. Ghosh, D. Hung, J. Li, and H. Jijon, Th17 plasticity and its changes associated with inflammatory bowel disease, World J Gastroenterol, vol.21, pp.12283-95, 2015.

A. Raza and M. T. Shata, Letter: pathogenicity of Th17 cells may differ in ulcerative colitis compared with Crohn's disease, Aliment Pharmacol Ther, vol.36, p.204, 2012.

J. Rivera-nieves, J. Ho, G. Bamias, N. Ivashkina, K. Ley et al., Antibody blockade of CCL25/CCR9 ameliorates early but not late chronic murine ileitis, Gastroenterology, vol.131, pp.1518-1547, 2006.