A. Alonso and R. R. Llinas, Subthreshold Na + -dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II, Nature, vol.342, pp.175-177, 1989.

R. G. Andrzejak and A. Bicanski, Forming place cells through feedforward input from grid cells -a computational model, Society for Neuroscience Abstract, vol.753, issue.1, 2007.

C. Barry, C. Lever, R. Hayman, T. Hartley, S. Burton et al., The boundary vector cell model of place cell firing and spatial memory, Reviews in the Neurosciences, vol.17, pp.71-97, 2006.

C. Barry, R. Hayman, N. Burgess, and K. Jeffery, Experience-dependent rescaling of entorhinal grids, Nature Neuroscience, vol.10, pp.682-684, 2007.

C. Barry, L. L. Ginsberg, J. O'keefe, and N. Burgess, Grid cell firing patterns signal environmental novelty by expansion, PNAS, vol.109, pp.17687-17692, 2012.

C. Barry, D. Bush, J. O'keefe, and N. Burgess, Models of Grid Cells and Theta Oscillations, Nature, vol.488, p.1, 2012.

K. C. Bittner, C. Grienberger, S. P. Vaidya, A. D. Milstein, J. J. Macklin et al., Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons, Nature Neuroscience, vol.18, pp.1133-1142, 2015.

H. T. Blair, K. Gupta, and K. Zhang, Conversion of a phase-to a rate-coded position signal by a three stage model of theta cells, place cells, and grid cells, Hippocampus, vol.18, pp.1239-55, 2008.

H. T. Blair, D. Wu, and J. Cong, Synchronization coding by ring attractors: A theoretical framework for oscillatory neurocomputing, Phil Trans R Soc Lond B Biol Sci, vol.369, p.20120526, 2014.

C. N. Boccara, F. Sargolini, V. H. Thoresen, T. Solstad, M. P. Witter et al., Grid cells in pre-and parasubiculum, Nature Neuroscience, vol.13, pp.987-994, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01384823

T. Bonnevie, B. Dunn, M. Fyhn, T. Hafting, D. Derdikmann et al., Grid cells require excitatory drive from the hippocampus, Nature Neuroscience, vol.16, pp.309-317, 2013.

M. P. Brandon, A. R. Bogaard, C. P. Libby, M. A. Connerney, K. Gupta et al., Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning, Science, vol.332, pp.595-599, 2011.

C. Buetfering, K. Allen, and H. Monyer, Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex, Nature Neuroscience, vol.17, pp.710-718, 2014.

Y. Burak and I. R. Fiete, Accurate path integration in continuous attractor network models of grid cells, PLoS Computational Biology, vol.5, p.1000291, 2009.

N. Burgess, C. Barry, K. J. Jeffery, and J. O'keefe, A grid and place cell model of path integration utilizing phase precession versus theta, Computational Cognitive Neuroscience Conference Poster, 2005.

D. C. Washington,

N. Burgess, C. Barry, and J. O'keefe, An oscillatory interference model of grid cell firing, Hippocampus, vol.17, pp.801-812, 2007.

N. Burgess, Grid cells and theta as oscillatory interference: Theory and predictions, Hippocampus, vol.18, pp.1157-1174, 2008.

C. P. Burgess and N. Burgess, Controlling phase noise in oscillatory interference models of grid cell firing, Journal of Neuroscience, vol.34, pp.6224-6232, 2014.

D. Bush and N. Burgess, A hybrid oscillatory interference/continuous attractor network model of grid cell firing, Journal of Neuroscience, vol.34, pp.5065-5079, 2014.

D. Bush, C. Barry, D. Manson, and N. Burgess, Using Grid Cells for Navigation, Neuron, vol.87, pp.507-520, 2015.

A. Cei, G. Girardeau, C. Drieu, E. Kanbi, K. Zugaro et al., Reversed theta sequences of hippocampal cell assemblies during backward travel, Nature Neuroscience, vol.17, pp.719-724, 2014.

G. Chen, D. Manson, F. Cacucci, and T. J. Wills, Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse, Current Biology, 2016.

J. R. Climer, E. L. Newman, and M. E. Hasselmo, Phase coding by grid cells in unconstrained environments: two-dimensional phase precession, European Journal of Neuroscience, vol.38, pp.2526-2541, 2013.

J. Conklin and C. Eliasmith, An attractor network model of path integration in the rat, Journal of Computational Neuroscience, vol.18, pp.183-203, 2005.

J. J. Couey, A. Witoelar, S. Zhang, K. Zheng, J. Ye et al., Recurrent inhibitory circuitry as a mechanism for grid formation, Nature Neuroscience, vol.16, pp.318-324, 2013.

D. Derdikman, J. R. Whitlock, A. Tsao, M. Fyhn, T. Hafting et al., Fragmentation of grid cell maps in multicompartment environment, Nature Neuroscience, vol.12, pp.1325-1332, 2009.

A. Dhillon and R. Jones, Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro, Neuroscience, vol.99, pp.413-422, 2000.

C. F. Doeller, C. Barry, and N. (. Burgess, Evidence for grid cells in a human memory network, Nature, vol.463, pp.657-661, 2010.

Y. Dordek, D. Soudry, R. Meir, and D. Derdikman, Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis, vol.5, p.10094, 2016.

C. Domnisoru, A. A. Kinkhabwala, and D. W. Tank, Membrane potential dynamics of grid cells, Nature, vol.495, pp.199-204, 2013.

T. Eliav, M. Geva-sagiv, A. Finkelstein, M. Yartsev, A. Rubin et al., Synchronicity without rhythmicity in the hippocampal formation of behaving bats, vol.632, p.1, 2015.

A. D. Ekstrom, J. B. Caplan, K. Shattuck, I. Fried, and M. J. Kahana, Human hippocampal theta activity during virtual navigation, Hippocampus, vol.15, pp.881-889, 2005.

T. Evans, A. Bicanski, D. Bush, and N. Burgess, How environment and self-motion combine in neural representations of space, Journal of Physiology, 2016.

I. R. Fiete, Y. Burak, and T. Brookings, What grid cells convey about rat location, Journal of Neuroscience, vol.28, pp.6858-6871, 2008.

E. C. Fuchs, A. Neitz, R. Pinna, S. Melzer, A. Caputi et al., Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex, Neuron, vol.89, pp.194-208, 2016.

M. C. Fuhs and D. S. Touretzky, A spin glass model of path integration in rat medial entorhinal cortex, Journal of Neuroscience, vol.26, pp.4266-4276, 2006.

M. Fyhn, T. Hafting, A. Treves, M. Moser, and E. I. Moser, Hippocampal remapping and grid realignment in entorhinal cortex, Nature, vol.446, pp.190-194, 2007.

M. Fyhn, T. Hafting, M. P. Witter, E. I. Moser, and M. B. Moser, Grid cells in mice, Hippocampus, vol.18, pp.1230-1238, 2008.

D. Garden, P. D. Dodson, O. Donnell, C. White, M. D. Nolan et al., Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields, Neuron, vol.60, pp.875-889, 2008.

C. W. Gatome, L. Slomianka, H. P. Lipp, and I. Amrein, Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse, Neuroscience, vol.170, pp.156-65, 2010.

L. M. Giocomo, E. A. Zilli, E. Fransén, and M. E. Hasselmo, Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing, Science, vol.315, pp.1719-1722, 2007.

L. M. Giocomo, M. Moser, and E. I. Moser, Computational Models of Grid Cells, Neuron, vol.71, pp.589-603, 2011.

A. Guanella, D. Kiper, and P. Verschure, A model of grid cells based on a twisted torus topology, International Journal of Neural Systems, vol.17, pp.231-240, 2007.

T. Hafting, M. Fyhn, S. Molden, M. B. Moser, and E. I. Moser, Microstructure of a spatial map in the entorhinal cortex, Nature, vol.436, pp.801-806, 2005.

T. Hafting, M. Fyhn, T. Bonnevie, M. B. Moser, and E. I. Moser, Hippocampus-independent phase precession in entorhinal grid cells, Nature, vol.453, pp.1248-52, 2008.

K. Hardcastle, S. Ganguli, and L. M. Giocomo, Environmental boundaries as an error correction mechanism for grid cells, Neuron, vol.86, pp.1-13, 2015.

M. E. Hasselmo, Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting, Hippocampus, vol.18, pp.1116-1126, 2008.

J. G. Heys, K. V. Rangarajan, and D. A. Dombeck, The functional micro-organization of grid cells revealed by cellular-resolution imaging, Neuron, vol.84, pp.1079-1090, 2014.

T. K. Horiuchi and C. F. Moss, Grid cells in 3-D: Reconciling data and models, Hippocampus, vol.25, pp.1489-1500, 2015.
DOI : 10.1002/hipo.22469

J. Jacobs, C. T. Weidemann, J. F. Miller, A. Solway, J. F. Burke et al., Direct recordings of grid-like neuronal activity in human spatial navigation, Nature Neuroscience, vol.16, pp.1188-1190, 2013.

A. Jeewajee, C. Barry, J. O'keefe, and N. Burgess, Grid cells and theta as oscillatory interference: electrophysiological data from freely-moving rats, Hippocampus, vol.18, pp.1175-1185, 2008.
DOI : 10.1002/hipo.20510

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.20510

A. Jeewajee, C. Barry, V. Douchamps, D. Manson, C. Lever et al., Theta phase precession of grid and place cell firing in open environments, Philosophical Transactions of the Royal Society B, vol.369, p.20120532, 2014.

N. J. Killian, M. J. Jutras, and E. A. Buffalo, A map of visual space in the primate entorhinal cortex, Nature, vol.491, pp.761-764, 2012.

T. Kitamura, M. Pignatelli, J. Suh, K. Kohara, A. Yoshiki et al., Island cells control temporal association memory, Science, vol.343, pp.896-901, 2014.
DOI : 10.1126/science.1244634

URL : http://europepmc.org/articles/pmc5572219?pdf=render

J. Koenig, A. N. Linder, J. K. Leutgeb, and S. Leutgeb, The spatial periodicity of grid cells is not sustained during reduced theta oscillations, Science, vol.332, pp.592-595, 2011.

E. Kropff and A. Treves, The emergence of grid cells: intelligent design or just adaptation, Hippocampus, vol.18, pp.1256-1269, 2008.

J. Krupic, M. Bauza, S. Burton, C. Barry, and J. O'keefe, Grid cell symmetry is shaped by environmental geometry, Nature, vol.518, pp.232-235, 2015.
DOI : 10.1038/nature14153

URL : http://europepmc.org/articles/pmc4576734?pdf=render

R. F. Langston, J. A. Ainge, J. J. Couey, C. B. Canto, T. L. Bjerknes et al., Development of the spatial representation system in the rat, Science, vol.328, pp.1576-1580, 2010.

D. Lee, B. J. Lin, and A. K. Lee, Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior, Science, vol.337, pp.849-853, 2012.

M. Lengyel, Z. Szatmáry, and P. Érdi, Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing, Hippocampus, vol.13, pp.700-714, 2003.

C. Lever, S. Burton, A. Jeewajee, J. O'keefe, and N. Burgess, Boundary vector cells in the subiculum of the hippocampal formation, Journal of Neuroscience, vol.29, pp.9771-9777, 2009.

W. L. Mcfarland, H. Teitelbaum, and E. K. Hedges, Relationship between hippocampal theta activity and running speed in the rat, Journal of Comparative and Physiological Psychology, vol.88, pp.324-328, 1975.

B. L. Mcnaughton, F. P. Battaglia, O. Jensen, E. I. Moser, and M. B. Moser, Path integration and the neural basis of the cognitive map, Nature Reviews Neuroscience, vol.7, pp.663-678, 2006.

H. Mhatre, A. Gorchetchnikov, and S. Grossberg, Grid cell hexagonal patterns formed by fast selforganized learning within entorhinal cortex, Hippocampus, vol.22, pp.320-334, 2012.

R. K. Naumann, S. Ray, S. Prokop, L. Las, F. L. Heppner et al., Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex, Journal of Comparative Neurology, vol.524, pp.783-806, 2015.

Z. Navratilova, L. M. Giocomo, J. M. Fellous, M. E. Hasselmo, and B. L. Mcnaughton, Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics, Hippocampus, vol.22, pp.772-789, 2012.

J. O'keefe and L. Nadel, The Hippocampus as a Cognitive Map, 1978.

J. O'keefe and M. L. Recce, Phase relationship between hippocampal place units and the EEG theta rhythm, Hippocampus, vol.3, pp.317-347, 1993.

H. F. Ólafsdóttir, F. Carpenter, and C. Barry, Coordinated grid and place cell replay during rest, Nature Neuroscience, vol.19, pp.792-794, 2016.

J. Orchard, Oscillator-Interference Models of Path Integration Do Not Require Theta Oscillations, Neural Computation, vol.27, pp.548-560, 2015.

H. Pastoll, H. Ramsden, and M. F. Nolan, Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid firing fields, Frontiers in Neural Circuits, vol.6, pp.1-21, 2012.

H. Pastoll, L. Solanka, M. Van-rossum, and M. F. Nolan, Feedback inhibition enables theta-nested gamma oscillations and grid firing fields, Neuron, vol.77, pp.141-154, 2013.

J. A. Pérez-escobar, O. Kornienko, P. Latuske, L. Kohler, and K. Allen, Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex. eLife, 2016.

F. Raudies, M. P. Brandon, G. W. Chapman, and M. E. Hasselmo, Head direction is coded more strongly than movement direction in a population of entorhinal neurons, Brain Research, vol.1621, pp.355-367, 2015.

S. Ray, R. Naumann, A. Burgalossi, Q. Tang, H. Schmidt et al., Grid-layout and thetamodulation of layer 2 pyramidal neurons in medial entorhinal cortex, Science, vol.343, pp.891-896, 2014.

E. T. Reifenstein, R. Kempter, S. Schreiber, M. B. Stemmler, and A. V. Herz, Grid cells in rat entorhinal cortex encode physical space with independent firing fields and phase precession at the single-trial level, PNAS, vol.109, pp.6301-6306, 2012.

E. Reifenstein, M. Stemmler, A. Herz, R. Kempter, and S. Schreiber, Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments, PLoS One, vol.9, p.100638, 2014.

M. W. Remme, M. Lengyel, and B. S. Gutkin, Democracy-independence trade-off in oscillating dendrites and its implications for grid cells, Neuron, vol.66, pp.429-437, 2010.

J. Rivas, J. M. Gaztelu, and E. García-austt, Changes in hippocampal cell discharge patterns and theta rhythm spectral properties as a function of walking velocity in the guinea pig, Experimental Brain Research, vol.108, pp.113-118, 1996.

E. T. Rolls, S. M. Stringer, and T. Elliot, Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning, Network: Computation in Neural Systems, vol.447, pp.447-465, 2006.

A. Samsonovich and B. L. Mcnaughton, Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model, Journal of Neuroscience, vol.17, pp.5900-5920, 1997.

F. Sargolini, M. Fyhn, T. Hafting, B. L. Mcnaughton, M. P. Witter et al., Conjunctive representation of position, direction, and velocity in entorhinal cortex, Science, vol.312, pp.758-62, 2006.

F. Savelli, D. Yoganarasimha, and J. J. Knierim, Influence of boundary removal on the spatial representations of the medial entorhinal cortex, Hippocampus, vol.18, pp.1270-1282, 2008.

C. Schmidt-hieber and M. Häusser, Cellular mechanisms of spatial navigation in the medial entorhinal cortex, Nature Neuroscience, vol.16, pp.325-356, 2013.

C. Schmidt-hieber and M. Häusser, How to build a grid cell, Phil Trans Roy Soc B, vol.369, p.20120520, 2014.

C. Schmidt-hieber, G. Toleikyte, L. Aitchison, A. Roth, B. A. Clark et al., Active dendritic integration as a mechanism for robust and precise grid cell firing, Nature Neuroscience, vol.20, pp.1114-1121, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01577058

C. Schmidt-hieber and M. F. Nolan, Synaptic integrative mechanisms for spatial cognition, Nature Neuroscience, vol.26, pp.1483-1492, 2017.

M. E. Sheffield and D. A. Dombeck, Calcium transient prevalence across the dendritic arbour predicts place field properties, Nature, vol.517, pp.200-204, 2015.

O. Shipston-sharman, L. Solanka, and M. F. Nolan, Continuous attractor network models of grid cell firing based on excitatory-inhibitory interactions, J Physiol, 2016.

L. Solanka, M. Van-rossum, and M. F. Nolan, Noise promotes independent control of gamma oscillations and grid firing within a recurrent attractor network, vol.4, p.6444, 2015.

T. Solstad, C. N. Boccara, E. Kropff, M. B. Moser, and E. I. Moser, Representation of geometric borders in the entorhinal cortex, Science, vol.322, pp.1865-1868, 2008.

M. Stemmler, A. Mathis, and A. Herz, Connecting multiple spatial scales to decode the population activity of grid cells, Science Advances, vol.1, p.1500816, 2015.

H. Stensola, T. Stensola, T. Solstad, K. Frøland, M. B. Moser et al., The entorhinal grid map is discretized, Nature, vol.492, pp.72-78, 2012.

T. Stensola, H. Stensola, M. Moser, and E. I. Moser, Shearing-induced asymmetry in entorhinal grid cells, Nature, vol.518, pp.207-212, 2015.

C. Sun, T. Kitamura, J. Yamamoto, J. Martin, M. Pignatelli et al., Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells, PNAS, vol.112, pp.9466-9471, 2015.

G. Tocker, O. Barak, and D. Derdikman, Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex, Hippocampus, vol.25, pp.1599-1613, 2015.

C. H. Vanderwolf, Hippocampal electrical activity and voluntary movement in the rat, EEG Clinical Neurophysiology, vol.26, pp.407-418, 1969.

A. J. Watrous, D. J. Lee, A. Izadi, G. G. Gurkoff, K. Shahlaie et al., A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation, Hippocampus, vol.23, pp.656-661, 2013.

A. C. Welday, I. G. Shlifer, M. L. Bloom, K. Zhang, and H. T. Blair, Cosine directional tuning of theta cell burst frequencies: evidence for spatial coding by oscillatory interference, Journal of Neuroscience, vol.31, pp.16157-16176, 2011.

P. E. Welinder, Y. Burak, and I. R. Fiete, Grid cells: the position code, neural network models of activity, and the problem of learning, Hippocampus, vol.18, pp.1283-1300, 2008.

C. E. Wells, D. P. Amos, A. Jeewajee, V. Douchamps, R. J. Rodgers et al., Novelty and anxiolytic drugs dissociate two components of hippocampal theta in behaving rats, Journal of Neuroscience, vol.33, pp.8650-8667, 2013.

J. Widlowski and I. R. Fiete, A Model of Grid Cell Development through Spatial Exploration and Spike Time-Dependent Plasticity, Neuron, vol.83, pp.481-495, 2014.

T. J. Wills, F. Cacucci, N. Burgess, and J. O'keefe, Development of the hippocampal cognitive map in pre-weanling rats, Science, vol.328, pp.1573-1576, 2010.

S. S. Winter, M. L. Mehlman, B. J. Clark, and J. S. Taube, Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex, Current Biology, vol.25, pp.2493-2502, 2015.

M. M. Yartsev, M. P. Witter, and N. Ulanovsky, Grid cells without theta oscillations in the entorhinal cortex of bats, Nature, vol.479, pp.103-107, 2011.

K. Yoon, M. A. Buice, C. Barry, R. Hayman, N. Burgess et al., Specific evidence of lowdimensional continuous attractor dynamics in grid cells, Nature Neuroscience, vol.16, pp.1077-1084, 2013.

K. Yoon, S. Lewallen, A. A. Kinkhabwala, D. W. Tank, and I. R. Fiete, Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice, Neuron, vol.89, pp.1086-1099, 2016.

K. Zhang, Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory, Journal of Neuroscience, vol.16, pp.2112-2126, 1996.

E. A. Zilli, Models of grid cell spatial firing published, Frontiers in Neural Circuits, vol.6, p.16, 2005.
DOI : 10.3389/fncir.2012.00016

URL : https://www.frontiersin.org/articles/10.3389/fncir.2012.00016/pdf