F. Allerberger and M. Wagner, Listeriosis: a resurgent foodborne infection, Clin Microbiol Infect, vol.16, pp.16-23, 2010.

A. Ricci, A. Allende, D. Bolton, and M. Chemaly, EFSA Panel on Biological Hazards (BIOHAZ) et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU, EFSA J, vol.16, p.5134, 2018.

E. Efsa, The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016, EFSA J, vol.15, p.5077, 2017.

A. Holch, K. Webb, O. Lukjancenko, D. Ussery, and B. M. Rosenthal, Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart, Appl Environ Microbiol, vol.79, pp.2944-2951, 2013.

B. Carpentier and O. Cerf, Review-Persistence of Listeria monocytogenes in food industry equipment and premises, Int J Food Microbiol, vol.145, pp.1-8, 2011.

F. Allerberger, Z. Bagó, S. Huhulescu, and A. Pietzka, Listeriosis: the dark side of refrigeration and ensiling

, Zoonoses -Infections Affecting Humans and Animals, pp.249-286, 2015.

A. Moura, A. Criscuolo, H. Pouseele, M. M. Maury, and A. Leclercq, Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat Microbiol, vol.2, p.16185, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01415883

A. C. Camargo, J. J. Woodward, and L. A. Nero, The continuous challenge of characterizing the foodborne pathogen Listeria monocytogenes, Foodborne Pathog Dis, vol.13, pp.405-416, 2016.

Y. Chen, Y. Luo, H. Carleton, R. Timme, and D. Melka, Whole genome and core genome multilocus sequence typing and single nucleotide polymorphism analyses of Listeria monocytogenes associated with an outbreak linked to cheese, Appl Environ Microbiol, vol.83, pp.633-650, 2013.

, Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-toeat foods in the EU, 2010-2011. Part A: Listeria monocytogenes prevalence estimates, EFSA J, vol.11, p.3241, 2013.

R. H. Orsi, H. C. Bakker, and M. Wiedmann, Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics, Int J Med Microbiol, vol.301, pp.79-96, 2011.

L. S. Burall, C. J. Grim, M. K. Mammel, and A. R. Datta, A comprehensive evaluation of the genetic relatedness of Listeria monocytogenes serotype 4b variant strains, Front Public Health, vol.5, p.241, 2017.

M. Ragon, T. Wirth, F. Hollandt, R. Lavenir, and M. Lecuit, A new perspective on Listeria monocytogenes evolution, PLoS Pathog, vol.4, p.1000146, 2008.

K. Rychli, A. Müller, A. Zaiser, D. Schoder, and F. Allerberger, Genome sequencing of Listeria monocytogenes "Quargel" listeriosis outbreak strains reveals two different strains with distinct in vitro virulence potential, PLoS One, vol.9, p.89964, 2014.

J. C. Kwong, K. Mercoulia, T. Tomita, M. Easton, and H. Y. Li, Prospective whole-genome sequencing enhances national surveillance of Listeria monocytogenes, J Clin Microbiol, vol.54, pp.333-342, 2016.

B. R. Jackson, C. Tarr, E. Strain, K. A. Jackson, and A. Conrad, Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation, Clin Infect Dis, vol.63, pp.380-386, 2016.

K. Jensen, A. Nielsen, E. M. Björkman, J. T. Jensen, T. Müller et al., Whole-genome sequencing used to investigate a nationwide outbreak of listeriosis caused by ready-to-eat delicatessen meat, Clin Infect Dis, vol.63, pp.64-70, 2014.

A. Moura, M. Tourdjman, A. Leclercq, E. Hamelin, and E. Laurent, Real-time whole-genome sequencing for surveillance of Listeria monocytogenes, France. Emerg Infect Dis, vol.23, pp.1462-1470, 2017.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

R. Tewolde, T. Dallman, U. Schaefer, C. L. Sheppard, and P. Ashton, MOST: a modified MLST typing tool based on short read sequencing, PeerJ, vol.4, p.2308, 2016.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, and M. Dvorkin, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J Comput Biol, vol.19, pp.455-477, 2012.

T. J. Treangen, B. D. Ondov, S. Koren, and A. M. Phillippy, The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes, Genome Biol, vol.15, p.524, 2014.

E. Charpentier and P. Courvalin, Antibiotic resistance in Listeria spp, Antimicrob Agents Chemother, vol.43, pp.2103-2108, 1999.

B. Lungu, C. A. O'bryan, A. Muthaiyan, S. R. Milillo, and M. G. Johnson, Listeria monocytogenes: antibiotic resistance in food production, Foodborne Pathog Dis, vol.8, pp.569-578, 2011.

. Painset, Microbial Genomics, vol.5, 2019.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat Methods, vol.9, pp.357-359, 2012.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, and J. Ruan, Genome Project Data Processing Subgroup et al. The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 1000.

A. Camejo, F. Carvalho, O. Reis, E. Leitão, and S. Sousa, The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle, Virulence, vol.2, pp.379-394, 2011.

M. M. Maury, Y. H. Tsai, C. Charlier, M. Touchon, and V. Chenal-francisque, Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity, Nat Genet, vol.48, pp.308-313, 2016.

D. Cabanes, S. Sousa, . Cebri-a-a, M. Lecuit, G. Portillo et al., Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein, Embo J, vol.24, pp.2827-2838, 2005.

J. Chen, X. Luo, L. Jiang, J. P. Wei, and W. , Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems, Food Microbiol, vol.26, pp.103-111, 2009.

D. Gómez, E. Azón, N. Marco, J. J. Carramiñana, and C. Rota, Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment, Food Microbiol, vol.42, pp.61-65, 2014.

S. Ryan, M. Begley, C. Hill, and C. G. Gahan, A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions, J Appl Microbiol, vol.109, pp.984-995, 2010.

F. Carvalho, M. L. Atilano, R. Pombinho, G. Covas, and R. L. Gallo, L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane, PLoS Pathog, vol.11, p.1004919, 2015.

N. Promadej, F. Fiedler, P. Cossart, S. Dramsi, and S. Kathariou, Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene, J Bacteriol, vol.181, pp.418-425, 1999.

D. Cabanes, O. Dussurget, P. Dehoux, and P. Cossart, Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence, Mol Microbiol, vol.51, pp.1601-1614, 2004.

R. Ebner, R. Stephan, D. Althaus, S. Brisse, and M. M. , Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011-2014 from different food matrices in Switzerland, Food Control, vol.57, pp.321-326, 2015.

B. F-elix, C. Feurer, A. Maillet, L. Guillier, and E. Boscher, Population genetic structure of Listeria monocytogenes strains isolated from the pig and pork production chain in France, Front Microbiol, vol.9, p.684, 2018.

C. Henri, P. Leekitcharoenphon, H. A. Carleton, N. Radomski, and R. S. Kaas, An assessment of different genomic approaches for inferring phylogeny of Listeria monocytogenes, Front Microbiol, vol.8, p.2351, 2017.

S. Bertrand, G. Huys, M. Yde, D. 'haene, K. Tardy et al., Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France, J Med Microbiol, vol.54, pp.1151-1156, 2005.

A. Morvan, C. Moubareck, A. Leclercq, M. Herv-e-bazin, and S. Bremont, Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France, Antimicrob Agents Chemother, vol.54, pp.2728-2731, 2010.

S. A. Granier, C. Moubareck, C. Colaneri, A. Lemire, and S. Roussel, Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period, Appl Environ Microbiol, vol.77, pp.2788-2790, 2011.

H. Jamali, M. Paydar, S. Ismail, C. Y. Looi, and W. F. Wong, Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets, BMC Microbiol, vol.15, p.144, 2015.

H. Den-besten, A. Am-ezquita, S. Bover-cid, S. Dagnas, and M. Ellouze, Next generation of microbiological risk assessment: potential of omics data for exposure assessment, Int J Food Microbiol, vol.287, pp.18-27, 2018.

K. Rantsiou, S. Kathariou, A. Winkler, P. Skandamis, and M. J. Saint-cyr, Next generation microbiological risk assessment: opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment, Int J Food Microbiol, vol.287, pp.3-9, 2018.

E. Franz, L. M. Gras, and T. Dallman, Significance of whole genome sequencing for surveillance, source attribution and microbial risk assessment of foodborne pathogens, Curr Opin Food Sci, vol.8, pp.74-79, 2016.

A. Pielaat, M. P. Boer, L. M. Wijnands, A. H. Van-hoek, and E. Bouw, First step in using molecular data for microbial food safety risk assessment; hazard identification of Escherichia coli O157: H7 by coupling genomic data with in vitro adherence to human epithelial cells, Int J Food Microbiol, vol.213, pp.130-138, 2015.