H. Miyakawa, S. K. Woo, C. P. Chen, S. C. Dahl, J. S. Handler et al., Cis-and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity, Am J Physiol, vol.274, pp.753-761, 1998.

J. P. Urban, A. C. Hall, and K. A. Gehl, Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes, J Cell Physiol, vol.154, pp.262-270, 1993.

Y. Y. Zhou, J. A. Yao, and G. N. Tseng, Role of tyrosine kinase activity in cardiac slow delayed rectifier channel modulation by cell swelling, Pflugers Arch, vol.433, pp.750-757, 1997.

J. D. Finan and F. Guilak, The effects of osmotic stress on the structure and function of the cell nucleus, J Cell Biochem, vol.109, pp.460-467, 2010.

D. L. Ly, F. Waheed, and M. Lodyga, Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton, Am J Physiol Cell Physiol, vol.304, pp.115-127, 2013.

M. Ding, C. Eliasson, C. Betsholtz, A. Hamberger, and M. Pekny, Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin, Brain Res Mol Brain Res, vol.62, pp.77-81, 1998.
DOI : 10.1016/s0169-328x(98)00240-x

M. D?alessandro, D. Russell, S. M. Morley, A. M. Davies, and E. B. Lane, Keratin mutations of epidermolysis bullosa simplex alter the kinetics of stress response to osmotic shock, J Cell Sci, vol.115, pp.4341-4351, 2002.

M. Meriane, S. Mary, F. Comunale, E. Vignal, P. Fort et al., Cdc42Hs and Rac1 GTPases induce the collapse of the vimentin intermediate filament network, J Biol Chem, vol.275, pp.33046-33052, 2000.

D. D. Tang, Y. Bai, and S. J. Gunst, Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine, Biochem J, vol.388, pp.773-783, 2005.

B. Sinha, D. Köster, and R. Ruez, Cells respond to mechanical stress by rapid disassembly of caveolae, Cell, vol.144, pp.402-413, 2011.
DOI : 10.1016/j.cell.2010.12.031

URL : https://hal.archives-ouvertes.fr/hal-00821331

Y. Jiu, J. L. Ki, S. Tojkander, M. Varjosalo, J. E. Eriksson et al., Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers, Cell Rep, vol.11, pp.1511-1518, 2015.
DOI : 10.1016/j.celrep.2015.05.008

URL : https://doi.org/10.1016/j.celrep.2015.05.008

M. Schoumacher, R. D. Goldman, D. Louvard, and D. M. Vignjevic, Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia, J Cell Biol, vol.189, pp.541-556, 2010.
DOI : 10.1083/jcb.200909113

URL : http://jcb.rupress.org/content/189/3/541.full.pdf

I. Correia, D. Chu, Y. H. Chou, R. D. Goldman, and P. Matsudaira, Adhesiondependent formation of fimbrin-vimentin complexes in macrophages, J Cell Biol, vol.146, pp.831-842, 1999.

F. Huber, A. Boire, M. P. López, and G. H. Koenderink, Cytoskeletal crosstalk: when three different personalities team up, Curr Opin Cell Biol, vol.32, pp.39-47, 2015.
DOI : 10.1016/j.ceb.2014.10.005

E. H. Ball and S. J. Singer, Association of microtubules and intermediate filaments in normal fibroblasts and its disruption upon transformation by a temperature-sensitive mutant of Rous sarcoma virus, Proc Natl Acad Sci USA, vol.78, pp.6986-6990, 1981.

R. D. Goldman, The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine, J Cell Biol, vol.51, pp.752-762, 1971.

C. Leduc and S. Etienne-manneville, Regulation of microtubuleassociated motors drives intermediate filament network polarization, J Cell Biol, vol.216, pp.1689-703, 2017.
DOI : 10.1083/jcb.201607045

URL : https://hal.archives-ouvertes.fr/pasteur-02058889

C. Hookway, L. Ding, M. W. Davidson, J. Z. Rappoport, G. Danuser et al., Microtubule-dependent transport and dynamics of vimentin intermediate filaments, Mol Biol Cell, vol.26, pp.1675-1686, 2015.
DOI : 10.1091/mbc.e14-09-1398

URL : https://doi.org/10.1091/mbc.e14-09-1398

K. L. Vikstrom, S. S. Lim, R. D. Goldman, and G. G. Borisy, Steady state dynamics of intermediate filament networks, J Cell Biol, vol.118, pp.121-129, 1992.
DOI : 10.1083/jcb.118.1.121

URL : http://jcb.rupress.org/content/118/1/121.full.pdf

V. Prahlad, M. Yoon, R. D. Moir, R. D. Vale, and R. D. Goldman, Rapid movements of vimentin on microtubule tracks: kinesindependent assembly of intermediate filament networks, J Cell Biol, vol.143, pp.159-170, 1998.

M. Yoon, R. D. Moir, V. Prahlad, and R. D. Goldman, Motile properties of vimentin intermediate filament networks in living cells, J Cell Biol, vol.143, pp.147-157, 1998.

B. T. Helfand, A. Mikami, R. B. Vallee, and R. D. Goldman, A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization, J Cell Biol, vol.157, pp.795-806, 2002.