Q. Tan, Y. Zhu, J. Li, Z. Chen, G. W. Han et al., Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex, Science, vol.341, pp.1387-1390, 2013.

J. Jin, F. Momboisse, G. Boncompain, F. Koensgen, Z. Zhou et al., CCR5 adopts three homodimeric conformations that control cell surface delivery, Sci. Signal, vol.11, 2018.

K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, Seventransmembrane receptors, Nat. Rev. Mol. Cell Biol, vol.3, pp.639-650, 2002.

J. W. Griffith, C. L. Sokol, and A. D. Luster, Chemokines and chemokine receptors: positioning cells for host defense and immunity, Annu. Rev. Immunol, vol.32, pp.659-702, 2014.

M. M. Lederman, A. Penn-nicholson, M. Cho, and D. Mosier, Biology of CCR5 and its role in HIV infection and treatment, JAMA, vol.296, pp.815-826, 2006.

S. Sorce, R. Myburgh, and K. H. Krause, The chemokine receptor CCR5 in the central nervous system, Prog. Neurobiol, vol.93, pp.297-311, 2011.

M. Samson, O. Labbe, C. Mollereau, G. Vassart, and M. Parmentier, Molecular cloning and functional expression of a new human CC-chemokine receptor gene, Biochemistry, vol.35, pp.3362-3367, 1996.

C. Combadiere, S. K. Ahuja, H. L. Tiffany, and P. M. Murphy, Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1 (alpha), MIP-1(beta), and RANTES, J. Leukoc. Biol, vol.60, pp.147-152, 1996.

P. Menten, S. Struyf, E. Schutyser, A. Wuyts, E. De-clercq et al., The LD78beta isoform of MIP-1alpha is the most potent CCR5 agonist and HIV-1-inhibiting chemokine, J. Clin. Invest, vol.104, pp.1-5, 1999.

C. Blanpain, I. Migeotte, B. Lee, J. Vakili, B. J. Doranz et al., CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist, vol.94, pp.1899-1905, 1999.

F. Bachelerie, A. Ben-baruch, A. M. Burkhardt, C. Combadiere, J. M. Farber et al., International Union of Basic and Clinical Pharmacology

. Lxxxix, Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors, Pharmacol. Rev, vol.66, pp.1-79, 2014.

C. C. Bleul, L. Wu, J. A. Hoxie, T. A. Springer, and C. R. Mackay, The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.1925-1930, 1997.

L. Wu, W. A. Paxton, N. Kassam, N. Ruffing, J. B. Rottman et al., CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro, J. Exp. Med, vol.185, pp.1681-1691, 1997.

I. A. Khan, S. Y. Thomas, M. M. Moretto, F. S. Lee, S. A. Islam et al., CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection, PLoS Pathog, vol.2, p.49, 2006.

J. He, Y. Chen, M. Farzan, H. Choe, A. Ohagen et al., CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia, Nature, vol.385, pp.645-649, 1997.

A. Granelli-piperno, B. Moser, M. Pope, D. Chen, Y. Wei et al., Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors, J. Exp. Med, vol.184, pp.2433-2438, 1996.

M. Zaitseva, A. Blauvelt, S. Lee, C. K. Lapham, V. Klauskovtun et al., Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection, Nat. Med, vol.3, pp.1369-1375, 1997.

J. W. Lee, A. Hoshino, K. Inoue, T. Saitou, S. Uehara et al., The HIV co-receptor CCR5 regulates osteoclast function, Nat. Commun, vol.8, p.2226, 2017.

J. J. Maguire, K. L. Jones, R. E. Kuc, M. C. Clarke, M. R. Bennett et al., The CCR5 chemokine receptor mediates vasoconstriction and stimulates intimal hyperplasia in human vessels in vitro, Cardiovasc. Res, vol.101, pp.513-521, 2014.

E. Seki, S. De-minicis, G. Y. Gwak, J. Kluwe, S. Inokuchi et al., CCR1 and CCR5 promote hepatic fibrosis in mice, J. Clin. Invest, vol.119, pp.1858-1870, 2009.

S. V. Westmoreland, X. Alvarez, C. Debakker, P. Aye, M. L. Wilson et al., Developmental expression patterns of CCR5 and CXCR4 in the rhesus macaque brain, J. Neuroimmunol, vol.122, pp.146-158, 2002.

F. Castellino, A. Y. Huang, G. Altan-bonnet, S. Stoll, C. Scheinecker et al., Chemokines enhance immunity by guiding naive CD8 + T cells to sites of CD4+ T celldendritic cell interaction, Nature, vol.440, pp.890-895, 2006.

K. L. Jones, J. J. Maguire, and A. P. Davenport, Chemokine receptor CCR5: from AIDS to atherosclerosis, Br. J. Pharmacol, vol.162, pp.1453-1469, 2011.

A. Khalid, J. Wolfram, I. Ferrari, C. Mu, J. Mai et al., Recent advances in discovering the role of CCL5 in metastatic breast cancer, Mini Rev. Med. Chem, vol.15, pp.1063-1072, 2015.

X. Jiao, M. A. Velasco-velazquez, M. Wang, Z. Li, H. Rui et al., CCR5 governs DNA damage and breast cancer stem cell expansion, Cancer Res, vol.78, pp.1657-1671, 2018.

S. K. Singh, M. K. Mishra, I. A. Eltoum, S. Bae, J. W. Lillard et al., CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells, Sci. Rep, vol.8, p.1323, 2018.

M. Oppermann, Chemokine receptor CCR5: insights into structure, function, and regulation, Cell. Signal, vol.16, pp.1201-1210, 2004.

S. Rajagopal, D. L. Bassoni, J. J. Campbell, N. P. Gerard, C. Gerard et al., Biased agonism as a mechanism for differential signaling by chemokine receptors, J. Biol. Chem, vol.288, pp.35039-35048, 2013.

A. Mueller and P. G. Strange, CCL3, acting via the chemokine receptor CCR5, leads to independent activation of Janus kinase 2 (JAK2) and Gi proteins, FEBS Lett, vol.570, pp.126-132, 2004.

M. Corno, Q. H. Liu, D. Schols, E. De-clercq, S. Gessani et al., HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling, Blood, vol.98, pp.2909-2916, 2001.

R. Cheung, M. Malik, V. Ravyn, B. Tomkowicz, A. Ptasznik et al., An arrestin-dependent multi-kinase signaling complex mediates MIP-1beta/CCL4 signaling and chemotaxis of primary human macrophages, J. Leukoc. Biol, vol.86, pp.833-845, 2009.

M. Liebick, S. Henze, V. Vogt, and M. Oppermann, Functional consequences of chemically-induced beta-arrestin binding to chemokine receptors CXCR4 and CCR5 in the absence of ligand stimulation, Cell. Signal, vol.38, pp.201-211, 2017.

Y. Wu and A. Yoder, Chemokine coreceptor signaling in HIV-1 infection and pathogenesis, PLoS Pathog, vol.5, p.1000520, 2009.

B. Lagane, S. Ballet, T. Planchenault, K. Balabanian, E. L. Poul et al., Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis, Mol. Pharmacol, vol.67, pp.1966-1976, 2005.

C. A. Flanagan, Receptor conformation and constitutive activity in CCR5 chemokine receptor function and HIV infection, Adv. Pharmacol, vol.70, pp.215-263, 2014.

N. Signoret, T. Christophe, M. Oppermann, and M. Marsh, pH-independent endocytic cycling of the chemokine receptor CCR5, Traffic, vol.5, pp.529-543, 2004.

N. Signoret, A. Pelchen-matthews, M. Mack, A. E. Proudfoot, and M. Marsh, Endocytosis and recycling of the HIV coreceptor CCR5, J. Cell Biol, vol.151, pp.1281-1294, 2000.

M. Delhaye, A. Gravot, D. Ayinde, F. Niedergang, M. Alizon et al., Identification of a postendocytic sorting sequence in CCR5, Mol. Pharmacol, vol.72, pp.1497-1507, 2007.

J. M. Escola, G. Kuenzi, H. Gaertner, M. Foti, and O. Hartley, CC chemokine receptor 5 (CCR5) desensitization: cycling receptors accumulate in the trans-Golgi network, J. Biol. Chem, vol.285, pp.41772-41780, 2010.

J. Corbisier, C. Gales, A. Huszagh, M. Parmentier, and J. Y. Springael, Biased signaling at chemokine receptors, J. Biol. Chem, vol.290, pp.9542-9554, 2015.

A. Mueller, N. G. Mahmoud, and P. G. Strange, Diverse signalling by different chemokines through the chemokine receptor CCR5, Biochem. Pharmacol, vol.72, pp.739-748, 2006.

J. Corbisier, A. Huszagh, C. Gales, M. Parmentier, and J. Y. Springael, Partial agonist and biased signaling properties of the synthetic enantiomers J113863/UCB35625 at chemokine receptors CCR2 and CCR5, J. Biol. Chem, vol.292, pp.575-584, 2017.

J. S. Smith, R. J. Lefkowitz, and S. , Biased signalling: from simple switches to allosteric microprocessors, Nat. Rev. Drug Discov, vol.17, pp.243-260, 2018.

D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, D. Guétard et al., T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature, vol.312, pp.767-768, 1984.

A. G. Dalgleish, P. C. Beverley, P. R. Clapham, D. H. Crawford, M. F. Greaves et al., The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature, vol.312, pp.763-767, 1984.

E. M. Fenyo, J. Albert, and B. Asjo, Replicative capacity, cytopathic effect and cell tropism of HIV, AIDS, vol.3, pp.5-12, 1989.

Y. Feng, C. C. Broder, P. E. Kennedy, and E. A. Berger, HIV-1 entry cofactor: functional cDNA cloning of a seventransmembrane G-protein coupled receptor, Science, vol.272, pp.872-877, 1996.

E. Oberlin, A. Amara, F. Bachelerie, C. Bessia, J. L. Virelizier et al., The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1, Nature, vol.382, pp.833-835, 1996.

C. C. Bleul, M. Farzan, H. Choe, C. Parolin, I. Clark-lewis et al., The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry, Nature, vol.382, pp.829-833, 1996.

F. Cocchi, A. L. Devico, A. Garzino-demo, S. K. Arya, R. C. Gallo et al., Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8 + T cells, Science, vol.270, pp.1811-1815, 1995.

H. Deng, R. Liu, W. Ellmeier, S. Choe, D. Unutmaz et al., Identification of a major co-receptor for primary isolates of HIV-1, Nature, vol.381, pp.661-666, 1996.

T. Dragic, V. Litwin, G. Allaway, S. R. Martin, Y. Huang et al., HIV-1 entry into CD4 + cells is mediated by the chemokine receptor CC-CKR5, Nature, vol.381, pp.667-673, 1996.

H. Choe, M. Farzan, Y. Sun, N. Sullivan, B. Rollins et al., The ß-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates, Cell, vol.85, pp.1135-1148, 1996.

G. Alkhatib, C. Combadiere, C. C. Broder, Y. Feng, P. E. Kennedy et al., CC CKR5: a RANTES, MIP-1a, MIP-1ß receptor as a fusion cofactor for macrophage-tropic HIV-1, Science, vol.272, pp.1955-1958, 1996.

B. J. Doranz, J. Rucker, Y. Yi, R. J. Smyth, M. Samson et al., A dual-tropic primary HIV-1 isolate that uses fusin and the ß-chemokine receptors CKR-5, CKR-3, and CKR-2B as fusion cofactors, Cell, vol.85, pp.1149-1158, 1996.

F. Arenzana-seisdedos and M. Parmentier, Genetics of resistance to HIV infection: role of co-receptors and co-receptor ligands, Semin. Immunol, vol.18, pp.387-403, 2006.

R. I. Connor, K. E. Sheridan, D. Ceradini, S. Choe, and N. R. Landau, Change in coreceptor use correlates with disease progression in HIV-1-infected individuals, J. Exp. Med, vol.185, pp.621-628, 1997.

C. B. Wilen, J. C. Tilton, and R. W. Doms, Molecular mechanisms of HIV entry, Adv. Exp. Med. Biol, vol.726, pp.223-242, 2012.

R. Liu, W. A. Paxton, S. Choe, D. Ceradini, S. R. Martin et al., Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection, Cell, vol.86, pp.367-377, 1996.

M. Dean, M. Carrington, C. Winkler, G. A. Huttley, M. W. Smith et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, vol.273, pp.1856-1862, 1996.

M. Samson, F. Libert, B. J. Doranz, J. Rucker, C. Liesnard et al., Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene, Nature, vol.382, pp.722-725, 1996.

F. Libert, P. Cochaux, G. Beckman, M. Samson, M. Aksenova et al., The deltaccr5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe, Hum. Mol. Genet, vol.7, pp.399-406, 1998.

Y. Huang, W. A. Paxton, S. M. Wolinsky, A. U. Neumann, L. Zhang et al., The role of a mutant CCR5 allele in HIV-1 transmission and disease progression, Nat. Med, vol.2, pp.1240-1243, 1996.

E. Gonzalez, M. Bamshad, N. Sato, S. Mummidi, R. Dhanda et al., Race-specific HIV-1 diseasemodifying effects associated with CCR5 haplotypes, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.12004-12009, 1999.

J. P. Ioannidis, P. S. Rosenberg, J. J. Goedert, L. J. Ashton, T. L. Benfield et al., Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3?A alleles on HIV-1 disease progression: an international meta-analysis of individualpatient data, Ann. Intern. Med, vol.135, pp.782-795, 2001.

M. Misrahi, J. P. Teglas, N. N'go, M. Burgard, M. J. Mayaux et al., CCR5 chemokine receptor variant in HIV-1 mother-to-child transmission and disease progression in children. French Pediatric HIV Infection Study Group, JAMA, vol.279, pp.277-280, 1998.

M. Benkirane, D. Y. Jin, R. F. Chun, R. A. Koup, and K. T. Jeang, Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32, J. Biol. Chem, vol.272, pp.30603-30606, 1997.

M. Chelli and M. Alizon, Determinants of the trans-dominant negative effect of truncated forms of the CCR5 chemokine receptor, J. Biol. Chem, vol.276, pp.46975-46982, 2001.

L. Agrawal, X. Lu, J. Qingwen, Z. Vanhorn-ali, I. V. Nicolescu et al., Role for CCR5Delta32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells, J. Virol, vol.78, pp.2277-2287, 2004.

S. Venkatesan, A. Petrovic, D. I. Van-ryk, M. Locati, D. Weissman et al., Reduced cell surface expression of CCR5 in CCR5Delta 32 heterozygotes is mediated by gene dosage, rather than by receptor sequestration, J. Biol. Chem, vol.277, pp.2287-2301, 2002.

G. Hutter, D. Nowak, M. Mossner, S. Ganepola, A. Mussig et al., Long-term control of HIV by CCR5 Delta32/ Delta32 stem-cell transplantation, N. Engl. J. Med, vol.360, pp.692-698, 2009.

G. Hutter, More on shift of HIV tropism in stem-cell transplantation with CCR5 delta32/delta32 mutation, N. Engl. J. Med, vol.371, pp.2437-2438, 2014.

R. F. Duarte, M. Salgado, I. Sanchez-ortega, M. Arnan, C. Canals et al., CCR5 Delta32 homozygous cord blood allogeneic transplantation in a patient with HIV: a case report, vol.2, pp.236-242, 2015.

L. Kordelas, J. Verheyen, D. W. Beelen, P. A. Horn, A. Heinold et al., Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation, N. Engl. J. Med, vol.371, pp.880-882, 2014.

A. Telenti, Safety concerns about CCR5 as an antiviral target, Curr. Opin. HIV AIDS, vol.4, pp.131-135, 2009.

W. G. Glass, D. H. Mcdermott, J. K. Lim, S. Lekhong, S. F. Yu et al., CCR5 deficiency increases risk of symptomatic West Nile virus infection, J. Exp. Med, vol.203, pp.35-40, 2006.

W. G. Glass, J. K. Lim, R. Cholera, A. G. Pletnev, J. L. Gao et al., Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection, J. Exp. Med, vol.202, pp.1087-1098, 2005.

J. K. Lim, D. H. Mcdermott, A. Lisco, G. A. Foster, D. Krysztof et al., CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission, J. Infect. Dis, vol.201, pp.178-185, 2010.

E. Kindberg, A. Mickiene, C. Ax, B. Akerlind, S. Vene et al., A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis, J. Infect. Dis, vol.197, pp.266-269, 2008.

J. B. Munro and W. Mothes, The HIV-1 Env trimer in HD, Structure, vol.22, pp.935-936, 2014.

E. G. Cormier and T. Dragic, The crown and stem of the V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor, J. Virol, vol.76, pp.8953-8957, 2002.

C. D. Rizzuto, R. Wyatt, N. Hernandez-ramos, Y. Sun, P. D. Kwong et al., A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding, Science, vol.280, pp.1949-1953, 1998.

J. P. Julien, A. Cupo, D. Sok, R. L. Stanfield, D. Lyumkis et al., Crystal structure of a soluble cleaved HIV-1 envelope trimer, Science, vol.342, pp.1477-1483, 2013.

D. Lyumkis, J. P. Julien, N. Val, A. Cupo, C. S. Potter et al., Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer, Science, vol.342, pp.1484-1490, 2013.

M. Pancera, T. Zhou, A. Druz, I. S. Georgiev, C. Soto et al., Structure and immune recognition of trimeric pre-fusion HIV-1 Env, Nature, vol.514, pp.455-461, 2014.

S. E. Kuhmann, E. J. Platt, S. L. Kozak, and D. Kabat, Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1, J. Virol, vol.74, pp.7005-7015, 2000.

A. M. Baker, A. Sauliere, G. Gaibelet, B. Lagane, S. Mazeres et al., CD4 interacts constitutively with multiple CCR5 at the plasma membrane of living cells. A fluorescence recovery after photobleaching at variable radii approach, J. Biol. Chem, vol.282, pp.35163-35168, 2007.

O. F. Brandenberg, C. Magnus, P. Rusert, R. R. Regoes, and A. Trkola, Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry, PLoS Pathog, vol.11, p.1004595, 2015.

X. Ma, M. Lu, J. Gorman, D. S. Terry, X. Hong et al., HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations, Elife, vol.7, p.34271, 2018.

Y. Zheng, G. W. Han, R. Abagyan, B. Wu, R. C. Stevens et al., Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV, Immunity, vol.46, pp.1005-1017, 2017.

J. Garcia-perez, P. Rueda, J. Alcami, D. Rognan, F. Arenzana-seisdedos et al., Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5), J. Biol. Chem, vol.286, pp.33409-33421, 2011.

J. Garcia-perez, P. Rueda, I. Staropoli, E. Kellenberger, J. Alcami et al., New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection, J. Biol. Chem, vol.286, pp.4978-4990, 2011.

M. P. Crump, J. H. Gong, P. Loetscher, K. Rajarathnam, A. Amara et al., Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1, EMBO J, vol.16, pp.6996-7007, 1997.

C. Blanpain, B. J. Doranz, A. Bondue, C. Govaerts, A. Leener et al., The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle, J. Biol. Chem, vol.278, pp.5179-5187, 2003.

C. Blanpain, B. J. Doranz, J. Vakili, J. Rucker, C. Govaerts et al., Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein, J. Biol. Chem, vol.274, pp.34719-34727, 1999.

B. J. Doranz, Z. Lu, J. Rucker, T. Zhang, M. Sharron et al., Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1, J. Virol, vol.71, pp.6305-6314, 1997.

T. Dragic, A. Trkola, S. W. Lin, K. A. Nagashima, F. Kajumo et al., Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry, J. Virol, vol.72, pp.279-285, 1998.

M. Farzan, H. Choe, L. Vaca, K. Martin, Y. Sun et al., A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5, J. Virol, vol.72, pp.1160-1164, 1998.

E. G. Cormier, M. Persuh, D. A. Thompson, S. W. Lin, T. P. Sakmar et al., Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.5762-5767, 2000.

C. Blanpain, V. Wittamer, J. M. Vanderwinden, A. Boom, B. Renneboog et al., Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways, J. Biol. Chem, vol.276, pp.23795-23804, 2001.

Y. Percherancier, T. Planchenault, A. Valenzuela-fernandez, J. L. Virelizier, F. Arenzana-seisdedos et al., Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor, J. Biol. Chem, vol.276, pp.31936-31944, 2001.

M. Farzan, T. Mirzabekov, P. Kolchinsky, R. Wyatt, M. Cayabyab et al., Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry, Cell, vol.96, pp.667-676, 1999.

N. Bannert, S. Craig, M. Farzan, D. Sogah, N. V. Santo et al., Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines, J. Exp. Med, vol.194, pp.1661-1673, 2001.

M. Farzan, G. J. Babcock, N. Vasilieva, P. L. Wright, E. Kiprilov et al., The role of post-translational modifications of the CXCR4 amino terminus in stromalderived factor 1 alpha association and HIV-1 entry, J. Biol. Chem, vol.277, pp.29484-29489, 2002.

M. Farzan, N. Vasilieva, C. E. Schnitzler, S. Chung, J. Robinson et al., A tyrosine-sulfated peptide based on the N terminus of CCR5 interacts with a CD4-enhanced epitope of the HIV-1 gp120 envelope glycoprotein and inhibits HIV-1 entry, J. Biol. Chem, vol.275, pp.33516-33521, 2000.

C. Seibert, M. Cadene, A. Sanfiz, B. T. Chait, and T. P. Sakmar, Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.11031-11036, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02150135

C. C. Huang, S. N. Lam, P. Acharya, M. Tang, S. H. Xiang et al., Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4, Science, vol.317, pp.1930-1934, 2007.

F. Baleux, L. Loureiro-morais, Y. Hersant, P. Clayette, F. Arenzana-seisdedos et al., A synthetic CD4-heparan sulfate glycoconjugate inhibits CCR5 and CXCR4 HIV-1 attachment and entry, Nat. Chem. Biol, vol.5, pp.743-748, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00415325

B. D. Quinlan, V. R. Joshi, M. R. Gardner, K. H. Ebrahimi, and M. Farzan, A double-mimetic peptide efficiently neutralizes HIV-1 by bridging the CD4-and coreceptor-binding sites of gp120, J. Virol, vol.88, pp.3353-3358, 2014.

K. K. Arien, F. Baleux, D. Desjardins, F. Porrot, Y. M. Coic et al., CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge, Sci. Rep, vol.6, p.34829, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01423094

M. R. Gardner, L. M. Kattenhorn, H. R. Kondur, M. Schaewen, T. Dorfman et al., AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges, Nature, vol.519, pp.87-91, 2015.

R. J. Park, T. Wang, D. Koundakjian, J. F. Hultquist, P. Lamothe-molina et al., A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors, Nat. Genet, vol.49, pp.193-203, 2017.

D. Weissman, R. L. Rabin, J. Arthos, A. Rubbert, M. Dybul et al., Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor, Nature, vol.389, pp.981-985, 1997.

C. Lee, Q. H. Liu, B. Tomkowicz, Y. Yi, B. D. Freedman et al., Macrophage activation through CCR5-and CXCR4-mediated gp120-elicited signaling pathways, J. Leukoc. Biol, vol.74, pp.676-682, 2003.

K. Balabanian, J. Harriague, C. Decrion, B. Lagane, S. Shorte et al., CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4 + T lymphocytes, J. Immunol, vol.173, pp.7150-7160, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00166849

C. Cicala, J. Arthos, E. Martinelli, N. Censoplano, C. C. Cruz et al., R5 and X4 HIV envelopes induce distinct gene expression profiles in primary peripheral blood mononuclear cells, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.3746-3751, 2006.

B. Tomkowicz, C. Lee, V. Ravyn, R. Cheung, A. Ptasznik et al., The Src kinase Lyn is required for CCR5 signaling in response to MIP-1beta and R5 HIV-1 gp120 in human macrophages, Blood, vol.108, pp.1145-1150, 2006.

R. Cheung, V. Ravyn, L. Wang, A. Ptasznik, and R. G. Collman, Signaling mechanism of HIV-1 gp120 and virion-induced IL-1beta release in primary human macrophages, J. Immunol, vol.180, pp.6675-6684, 2008.

M. Farzan, H. Choe, K. A. Martin, Y. Sun, M. Sidelko et al., HIV-1 entry and macrophage inflammatory protein-1beta-mediated signaling are independent functions of the chemokine receptor CCR5, J. Biol. Chem, vol.272, pp.6854-6857, 1997.

J. Gosling, F. S. Monteclaro, R. E. Atchison, H. Arai, C. L. Tsou et al., Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction from HIV-1 coreceptor activity, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.5061-5066, 1997.

I. Aramori, S. S. Ferguson, P. D. Bieniasz, J. Zhang, B. Cullen et al., Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor, EMBO J, vol.16, pp.4606-4616, 1997.

A. Amara, A. Vidy, G. Boulla, K. Mollier, J. Garcia-perez et al., G protein-dependent CCR5 signaling is not required for efficient infection of primary T lymphocytes and macrophages by R5 human immunodeficiency virus type 1 isolates, J. Virol, vol.77, pp.2550-2558, 2003.

R. Berro, A. Yasmeen, R. Abrol, B. Trzaskowski, S. Abi-habib et al., Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants, J. Virol, vol.87, pp.6569-6581, 2013.

A. Yoder, D. Yu, L. Dong, S. R. Iyer, X. Xu et al., HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells, Cell, vol.134, pp.782-792, 2008.

Y. L. Lin, C. Mettling, P. Portales, B. Reant, J. Clot et al., G-protein signaling triggered by R5 human immunodeficiency virus type 1 increases virus replication efficiency in primary T lymphocytes, J. Virol, vol.79, pp.7938-7941, 2005.

J. A. Juno and K. R. Fowke, Clarifying the role of G protein signaling in HIV infection: new approaches to an old question, AIDS Rev, vol.12, pp.164-176, 2010.

W. Wang, J. Guo, D. Yu, P. J. Vorster, W. Chen et al., A dichotomy in cortical actin and chemotactic actin activity between human memory and naive T cells contributes to their differential susceptibility to HIV-1 infection, J. Biol. Chem, vol.287, pp.35455-35469, 2012.

F. Francois and M. E. Klotman, Phosphatidylinositol 3-kinase regulates human immunodeficiency virus type 1 replication following viral entry in primary CD4 + T lymphocytes and macrophages, J. Virol, vol.77, pp.2539-2549, 2003.

E. Zaitseva, E. Zaitsev, K. Melikov, A. Arakelyan, M. Marin et al., Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine, Cell Host Microbe, vol.22, pp.99-110, 2017.

C. L. Lin, A. K. Sewell, G. F. Gao, K. T. Whelan, R. E. Phillips et al., Macrophage-tropic HIV induces and exploits dendritic cell chemotaxis, J. Exp. Med, vol.192, pp.587-594, 2000.

A. R. Anand, A. Prasad, R. R. Bradley, Y. S. Deol, T. Nagaraja et al., HIV-1 gp120-induced migration of dendritic cells is regulated by a novel kinase cascade involving Pyk2, p38 MAP kinase, and LSP1, Blood, vol.114, pp.3588-3600, 2009.

M. Cavarelli, C. Foglieni, M. Rescigno, and G. Scarlatti, R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5, EMBO Mol. Med, vol.5, pp.776-794, 2013.

L. Agrawal, Z. Vanhorn-ali, E. A. Berger, and G. Alkhatib, Specific inhibition of HIV-1 coreceptor activity by synthetic peptides corresponding to the predicted extracellular loops of CCR5, Blood, vol.103, pp.1211-1217, 2004.

M. Corno, G. Donninelli, B. Varano, L. Sacco, A. Masotti et al., HIV-1 gp120 activates the STAT3/ interleukin-6 axis in primary human monocyte-derived dendritic cells, J. Virol, vol.88, pp.11045-11055, 2014.

K. Zimmermann, T. Liechti, A. Haas, M. Rehr, A. Trkola et al., The orientation of HIV-1 gp120 binding to the CD4 receptor differentially modulates CD4 + T cell activation, J. Immunol, vol.194, pp.637-649, 2015.

X. Xiao, L. Wu, T. S. Stantchev, Y. R. Feng, S. Ugolini et al., Constitutive cell surface association between CD4 and CCR5, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.7496-7501, 1999.

Y. Percherancier, B. Lagane, T. Planchenault, I. Staropoli, R. Altmeyer et al., HIV-1 entry into T-cells is not dependent on CD4 and CCR5 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains, J. Biol. Chem, vol.278, pp.3153-3161, 2003.

S. T. Yang, A. J. Kreutzberger, V. Kiessling, B. K. Ganserpornillos, J. M. White et al., HIV virions sense plasma membrane heterogeneity for cell entry, Sci. Adv, vol.3, p.1700338, 2017.

R. Nygaard, Y. Zou, R. O. Dror, T. J. Mildorf, D. H. Arlow et al., The dynamic process of beta(2)-adrenergic receptor activation, Cell, vol.152, pp.532-542, 2013.

A. Manglik, T. H. Kim, M. Masureel, C. Altenbach, Z. Yang et al., Structural insights into the dynamic process of beta2-adrenergic receptor signaling, Cell, vol.161, pp.1101-1111, 2015.

P. S. Park, Ensemble of G protein-coupled receptor active states, Curr. Med. Chem, vol.19, pp.1146-1154, 2012.

N. Vaidehi and T. Kenakin, The role of conformational ensembles of seven transmembrane receptors in functional selectivity, Curr. Opin. Pharmacol, vol.10, pp.775-781, 2010.

V. Katritch, V. Cherezov, and R. C. Stevens, Diversity and modularity of G protein-coupled receptor structures, Trends Pharmacol. Sci, vol.33, pp.17-27, 2012.

X. Deupi and B. K. Kobilka, Energy landscapes as a tool to integrate GPCR structure, dynamics, and functionPhysiology (Bethesda), pp.293-303, 2010.

C. Blanpain, J. M. Vanderwinden, J. Cihak, V. Wittamer, E. L. Poul et al., Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies, Mol. Biol. Cell, vol.13, pp.723-737, 2002.

B. Lee, M. Sharron, C. Blanpain, B. J. Doranz, J. Vakili et al., Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function, J. Biol. Chem, vol.274, pp.9617-9626, 1999.

W. C. Olson, G. E. Rabut, K. A. Nagashima, D. N. Tran, D. J. Anselma et al., Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5, J. Virol, vol.73, pp.4145-4155, 1999.

C. M. Hill, D. Kwon, M. Jones, C. B. Davis, S. Marmon et al., The amino terminus of human CCR5 is required for its function as a receptor for diverse human and simian immunodeficiency virus envelope glycoproteins, Virology, vol.248, pp.357-371, 1998.

R. Berro, P. J. Klasse, D. Lascano, A. Flegler, K. A. Nagashima et al., Multiple CCR5 conformations on the cell surface are used differentially by human immunodeficiency viruses resistant or sensitive to CCR5 inhibitors, J. Virol, vol.85, pp.8227-8240, 2011.

J. M. Fox, R. Kasprowicz, O. Hartley, and N. Signoret, CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells, J. Leukoc. Biol, vol.98, pp.59-71, 2015.

A. J. Flegler, G. C. Cianci, and T. J. Hope, CCR5 conformations are dynamic and modulated by localization, trafficking and G protein association, PLoS One, vol.9, p.89056, 2014.

Z. Truan, L. T. Diez, C. Bonsch, S. Malkusch, U. Endesfelder et al., Quantitative morphological analysis of arrestin2 clustering upon G protein-coupled receptor stimulation by super-resolution microscopy, J. Struct. Biol, vol.184, pp.329-334, 2013.

L. Diez, C. Bonsch, S. Malkusch, Z. Truan, M. Munteanu et al., Coordinate-based colocalization-mediated analysis of arrestin clustering upon stimulation of the C-C chemokine receptor 5 with RANTES/ CCL5 analogues, Histochem. Cell Biol, vol.142, pp.69-77, 2014.

P. Colin, Y. Benureau, I. Staropoli, Y. Wang, N. Gonzalez et al., HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.9475-9480, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00825629

T. H. Bayburt, S. A. Vishnivetskiy, M. A. Mclean, T. Morizumi, C. C. Huang et al., Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding, J. Biol. Chem, vol.286, pp.1420-1428, 2011.

M. R. Whorton, M. P. Bokoch, S. G. Rasmussen, B. Huang, R. N. Zare et al., A monomeric G proteincoupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.7682-7687, 2007.

A. J. Kuszak, S. Pitchiaya, J. P. Anand, H. I. Mosberg, N. G. Walter et al., Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2, J. Biol. Chem, vol.284, pp.26732-26741, 2009.

S. Ferre, V. Casado, L. A. Devi, M. Filizola, R. Jockers et al., G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives, Pharmacol. Rev, vol.66, pp.413-434, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01067990

R. E. Salmas, M. Yurtsever, and S. Durdagi, Investigation of inhibition mechanism of chemokine receptor CCR5 by micro-second molecular dynamics simulations, Sci. Rep, vol.5, p.13180, 2015.

H. Issafras, S. Angers, S. Bulenger, C. Blanpain, M. Parmentier et al., Constitutive agonistindependent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors, J. Biol. Chem, vol.277, pp.34666-34673, 2002.

J. Lemay, S. Marullo, R. Jockers, M. Alizon, and A. Brelot, On the dimerization of CCR5, Nat. Immunol, vol.6, p.535, 2005.

J. Y. Springael, P. N. Le-minh, E. Urizar, S. Costagliola, G. Vassart et al., Allosteric modulation of binding properties between units of chemokine receptor homo-and hetero-oligomers, Mol. Pharmacol, vol.69, pp.1652-1661, 2006.

D. Sohy, H. Yano, P. De-nadai, E. Urizar, A. Guillabert et al., Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of "selective" antagonists, J. Biol. Chem, vol.284, pp.31270-31279, 2009.

M. Mellado, J. M. Rodriguez-frade, A. J. Vila-coro, S. Fernandez, A. Martin-de-ana et al., Chemokine receptor homo-or heterodimerization activates distinct signaling pathways, EMBO J, vol.20, pp.2497-2507, 2001.

L. Martinez-munoz, R. Barroso, S. Y. Dyrhaug, G. Navarro, P. Lucas et al., CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.1960-1969, 2014.

L. El-asmar, J. Y. Springael, S. Ballet, E. U. Andrieu, G. Vassart et al., Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers, vol.67, pp.460-469, 2005.

A. J. Vila-coro, M. Mellado, A. Martin-de-ana, P. Lucas, G. Real et al., HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.3388-3393, 2000.

Y. Nakano, K. Monde, H. Terasawa, Y. Yuan, K. Yusa et al., Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1, Virology, vol.452, pp.117-124, 2014.

L. V. Chernomordik, V. A. Frolov, E. Leikina, P. Bronk, and J. Zimmerberg, The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation, J. Cell Biol, vol.140, pp.1369-1382, 1998.

J. M. Rodriguez-frade, G. Real, A. Serrano, P. Hernanzfalcon, S. F. Soriano et al., Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor, EMBO J, vol.23, pp.66-76, 2004.

J. A. Hern, A. H. Baig, G. I. Mashanov, B. Birdsall, J. E. Corrie et al., Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.2693-2698, 2010.

R. S. Kasai and A. Kusumi, Single-molecule imaging revealed dynamic GPCR dimerization, Curr. Opin. Cell Biol, vol.27, pp.78-86, 2014.

D. Calebiro, F. Rieken, J. Wagner, T. Sungkaworn, U. Zabel et al., Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.743-748, 2013.

R. Abrol, B. Trzaskowski, W. A. Goddard, I. , A. Nesterov et al., Ligand-and mutation-induced conformational selection in the CCR5 chemokine G protein-coupled receptor, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.13040-13045, 2014.

S. M. Woollard and G. D. Kanmogne, Maraviroc: a review of its use in HIV infection and beyond, Drug Des, Dev. Ther, vol.9, pp.5447-5468, 2015.

A. Voux, M. C. Chan, A. T. Folefoc, M. T. Madziva, and C. A. Flanagan, Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion, PLoS One, vol.8, p.54532, 2013.

M. Westby, C. Smith-burchnell, J. Mori, M. Lewis, M. Mosley et al., Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitorbound receptor for entry, J. Virol, vol.81, pp.2359-2371, 2007.

M. Roche, M. R. Jakobsen, A. Ellett, H. Salimiseyedabad, B. Jubb et al., HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry, Retrovirology, vol.8, p.89, 2011.

J. C. Tilton, C. B. Wilen, C. A. Didigu, R. Sinha, J. E. Harrison et al., A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5, J. Virol, vol.84, pp.10863-10876, 2010.

J. Jin, P. Colin, I. Staropoli, E. Lima-fernandes, C. Ferret et al., Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry, J. Biol. Chem, vol.289, pp.19042-19052, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01027514

O. Hartley, E. Martins, and I. Scurci, Preventing HIV transmission through blockade of CCR5: rationale, progress and perspectives, Swiss Med. Wkly, vol.148, p.14580, 2018.

G. Alkhatib, S. S. Ahuja, D. Light, S. Mummidi, E. A. Berger et al., CC chemokine receptor 5-mediated signaling and HIV-1 Co-receptor activity share common structural determinants. Critical residues in the third extracellular loop support HIV-1 fusion, J. Biol. Chem, vol.272, pp.19771-19776, 1997.

A. Amara, S. L. Gall, O. Schwartz, J. Salamero, M. Montes et al., HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication, J. Exp. Med, vol.186, pp.139-146, 1997.

T. J. Henrich, N. R. Lewine, S. H. Lee, S. S. Rao, R. Berro et al., Differential use of CCR5 by HIV-1 clinical isolates resistant to small-molecule CCR5 antagonists, Antimicrob. Agents Chemother, vol.56, pp.1931-1935, 2012.

G. Gaibelet, T. Planchenault, S. Mazeres, F. Dumas, F. Arenzana-seisdedos et al., CD4 and CCR5 constitutively interact at the plasma membrane of living cells: a confocal fluorescence resonance energy transferbased approach, J. Biol. Chem, vol.281, pp.37921-37929, 2006.

L. Achour, M. G. Scott, H. Shirvani, A. Thuret, G. Bismuth et al., CD4-CCR5 interaction in intracellular compartments contributes to receptor expression at the cell surface, Blood, vol.113, pp.1938-1947, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00346678

R. S. Kasai, K. G. Suzuki, E. R. Prossnitz, I. Koyama-honda, C. Nakada et al., Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging, J. Cell Biol, vol.192, pp.463-480, 2011.

T. Sungkaworn, M. L. Jobin, K. Burnecki, A. Weron, M. J. Lohse et al., Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots, Nature, vol.550, pp.543-547, 2017.

A. B. Van't-wout, N. A. Kootstra, G. A. Mulder-kampinga, N. Albrecht-van-lent, H. J. Scherpbier et al., Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission, J. Clin. Invest, vol.94, pp.2060-2067, 1994.

J. P. Moore, S. G. Kitchen, P. Pugach, and J. A. Zack, The CCR5 and CXCR4 coreceptors-central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection, AIDS Res. Hum. Retrovir, vol.20, pp.111-126, 2004.

D. C. Douek, M. Roederer, and R. A. Koup, Emerging concepts in the immunopathogenesis of AIDS, Annu. Rev. Med, vol.60, pp.471-484, 2009.

J. M. Brenchley, M. Paiardini, K. S. Knox, A. I. Asher, B. Cervasi et al., Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections, Blood, vol.112, pp.2826-2835, 2008.

W. W. Agace, A. Amara, A. I. Roberts, J. L. Pablos, S. Thelen et al., Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation, Curr. Biol, vol.10, pp.325-328, 2000.

S. Raymond, A. Saliou, F. Nicot, P. Delobel, M. Dubois et al., Characterization of CXCR4-using HIV-1 during primary infection by ultra-deep pyrosequencing, J. Antimicrob. Chemother, vol.68, pp.2875-2881, 2013.

J. Ghosn, T. Bayan, K. Meixenberger, L. Tran, P. Frange et al., CD4 T cell decline following HIV seroconversion in individuals with and without CXCR4-tropic virus, J. Antimicrob. Chemother, vol.72, pp.2862-2868, 2017.

R. Biti, R. Ffrench, J. Young, B. Bennetts, G. Stewart et al., HIV-1 infection in an individual homozygous for the CCR5 deletion allele, Nat. Med, vol.3, pp.252-253, 1997.

T. R. O'brien, C. Winkler, M. Dean, J. A. Nelson, M. Carrington et al., HIV-1 infection in a man homozygous for CCR5 delta 32, Lancet, vol.349, p.1219, 1997.

I. Theodorou, L. Meyer, M. Magierowska, C. Katlama, and C. Rouzioux, HIV-1 infection in an individual homozygous for CCR5 delta 32, Seroco Study Group, vol.349, pp.1219-1220, 1997.

N. L. Michael, J. A. Nelson, V. N. Kewalramani, G. Chang, S. J. O'brien et al., Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32, J. Virol, vol.72, pp.6040-6047, 1998.

H. W. Sheppard, C. Celum, N. L. Michael, S. O'brien, M. Dean et al., HIV-1 infection in individuals with the CCR5-Delta32/Delta32 genotype: acquisition of syncytium-inducing virus at seroconversion, J. Acquir. Immune Defic. Syndr, vol.29, pp.307-313, 2002.

A. K. Iversen, C. B. Christiansen, J. Attermann, J. Eugenolsen, S. Schulman et al., Limited protective effect of the CCR5Delta32/CCR5Delta32 genotype on human immunodeficiency virus infection incidence in a cohort of patients with hemophilia and selection for genotypic X4 virus, J. Infect. Dis, vol.187, pp.215-225, 2003.

T. J. Henrich, E. Hanhauser, Z. Hu, H. J. Stellbrink, C. Noah et al., Viremic control and viral coreceptor usage in two HIV-1-infected persons homozygous for CCR5 Delta32, AIDS, vol.29, pp.867-876, 2015.

C. Jiang, N. F. Parrish, C. B. Wilen, H. Li, Y. Chen et al., Primary infection by a human immunodeficiency virus with atypical coreceptor tropism, J. Virol, vol.85, pp.10669-10681, 2011.

K. Chalmet, K. Dauwe, L. Foquet, F. Baatz, C. Seguindevaux et al., Presence of CXCR4-using HIV-1 in patients with recently diagnosed infection: correlates and evidence for transmission, J. Infect. Dis, vol.205, pp.174-184, 2012.

P. Frange, L. Meyer, J. Ghosn, C. Deveau, C. Goujard et al., Prevalence of CXCR4-tropic viruses in clustered transmission chains at the time of primary HIV-1 infection, Clin. Microbiol. Infect, vol.19, pp.252-255, 2013.

P. J. Mclaren, C. Coulonges, S. Ripke, L. Van-den, S. Berg et al., Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls, PLoS Pathog, vol.9, p.1003515, 2013.

F. Hladik, H. Liu, E. Speelmon, D. Livingston-rosanoff, S. Wilson et al., Combined effect of CCR5-Delta32 heterozygosity and the CCR5 promoter polymorphism ?2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission, J. Virol, vol.79, pp.11677-11684, 2005.

M. Carrington, T. Kissner, B. Gerrard, S. Ivanov, S. J. O'brien et al., Novel alleles of the chemokine-receptor gene CCR5, Am. J. Hum. Genet, vol.61, pp.1261-1267, 1997.

M. A. Ansari-lari, X. M. Liu, M. L. Metzker, A. R. Rut, and R. A. Gibbs, The extent of genetic variation in the CCR5 gene, Nat. Genet, vol.16, pp.221-222, 1997.

F. Barmania and M. S. Pepper, C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection, Appl. Transl. Genom, vol.2, pp.3-16, 2013.

C. Blanpain, B. Lee, M. Tackoen, B. Puffer, A. Boom et al., Multiple nonfunctional alleles of CCR5 are frequent in various human populations, Blood, vol.96, pp.1638-1645, 2000.

C. Blanpain, B. Lee, J. Vakili, B. J. Doranz, C. Govaerts et al., Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity, J. Biol. Chem, vol.274, pp.18902-18908, 1999.

C. Quillent, E. Oberlin, J. Braun, D. Rousset, G. Gonzalezcanali et al., HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene, Lancet, vol.351, pp.14-18, 1998.

T. Shioda, E. E. Nakayama, Y. Tanaka, X. Xin, H. Liu et al., Naturally occurring deletional mutation in the C-terminal cytoplasmic tail of CCR5 affects surface trafficking of CCR5, J. Virol, vol.75, pp.3462-3468, 2001.

M. Carrington, M. Dean, M. P. Martin, and S. J. O'brien, Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences, Hum. Mol. Genet, vol.8, pp.1939-1945, 1999.

L. Agrawal, Q. Jin, J. Altenburg, L. Meyer, R. Tubiana et al., CCR5Delta32 protein expression and stability are critical for resistance to human immunodeficiency virus type 1 in vivo, J. Virol, vol.81, pp.8041-8049, 2007.

Q. Jin, L. Agrawal, L. Meyer, R. Tubiana, I. Theodorou et al., CCR5Delta32 59537-G/A promoter polymorphism is associated with low translational efficiency and the loss of CCR5Delta32 protective effects, J. Virol, vol.82, pp.2418-2426, 2008.

W. A. Paxton, S. R. Martin, D. Tse, T. R. O'brien, J. Skurnick et al., Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure, Nat. Med, vol.2, pp.412-417, 1996.

W. A. Paxton, R. Liu, S. Kang, L. Wu, T. R. Gingeras et al., Reduced HIV-1 infectability of CD4 + lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of beta-chemokines, Virology, vol.244, pp.66-73, 1998.

F. A. Koning, C. A. Jansen, J. Dekker, R. A. Kaslow, N. Dukers et al., Correlates of resistance to HIV-1 infection in homosexual men with high-risk sexual behaviour, AIDS, vol.18, pp.1117-1126, 2004.

L. X. Truong, T. T. Luong, D. Scott-algara, P. Versmisse, A. David et al., CD4 cell and CD8 cellmediated resistance to HIV-1 infection in exposed uninfected intravascular drug users in Vietnam, AIDS, vol.17, pp.1425-1434, 2003.

A. Saez-cirion, P. Versmisse, L. X. Truong, L. A. Chakrabarti, W. Carpentier et al., Persistent resistance to HIV-1 infection in CD4 T cells from exposed uninfected Vietnamese individuals is mediated by entry and post-entry blocks, Retrovirology, vol.3, p.81, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00122137

C. Capoulade-metay, L. Ma, L. X. Truong, Y. Dudoit, P. Versmisse et al., New CCR5 variants associated with reduced HIV coreceptor function in southeast Asia, AIDS, vol.18, pp.2243-2252, 2004.

N. F. Parrish, F. Gao, H. Li, E. E. Giorgi, H. J. Barbian et al., Phenotypic properties of transmitted founder HIV-1, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.6626-6633, 2013.

C. S. Oberle, B. Joos, P. Rusert, N. K. Campbell, D. Beauparlant et al., Tracing HIV-1 transmission: envelope traits of HIV-1 transmitter and recipient pairs, Retrovirology, vol.13, p.62, 2016.

M. J. Deymier, Z. Ende, A. E. Fenton-may, D. A. Dilernia, W. Kilembe et al., Heterosexual transmission of subtype C HIV-1 selects consensus-like variants without increased replicative capacity or interferon-alpha resistance, PLoS Pathog, vol.11, p.1005154, 2015.

S. S. Iyer, F. Bibollet-ruche, S. Sherrill-mix, G. H. Learn, L. Plenderleith et al., Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.590-599, 2017.

G. Shi, O. Schwartz, and A. A. Compton, More than meets the I: the diverse antiviral and cellular functions of interferoninduced transmembrane proteins, Retrovirology, vol.14, p.53, 2017.

A. A. Compton, T. Bruel, F. Porrot, A. Mallet, M. Sachse et al., IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread, Cell Host Microbe, vol.16, pp.736-747, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01109877

T. L. Foster, H. Wilson, S. S. Iyer, K. Coss, K. Doores et al., Resistance of transmitted founder HIV-1 to IFITM-mediated restriction, Cell Host Microbe, vol.20, pp.429-442, 2016.

W. L. Wu, C. R. Grotefend, M. T. Tsai, Y. L. Wang, V. Radic et al., Delta20 IFITM2 differentially restricts X4 and R5 HIV-1, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.7112-7117, 2017.

K. Chikere, N. E. Webb, T. Chou, K. Borm, J. Sterjovski et al., Distinct HIV-1 entry phenotypes are associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies, Retrovirology, vol.11, p.48, 2014.

A. Heredia, B. Gilliam, A. Devico, N. Le, D. Bamba et al., CCR5 density levels on primary CD4 T cells impact the replication and Enfuvirtide susceptibility of R5 HIV-1, vol.21, pp.1317-1322, 2007.

J. Reynes, P. Portales, M. Segondy, V. Baillat, P. Andre et al., CD4+ T cell surface CCR5 density as a determining factor of virus load in persons infected with human immunodeficiency virus type 1, J. Infect. Dis, vol.181, pp.927-932, 2000.

X. Yang, Y. M. Jiao, R. Wang, Y. X. Ji, H. W. Zhang et al., High CCR5 density on central memory CD4+ T cells in acute HIV-1 infection is mostly associated with rapid disease progression, PLoS One, vol.7, p.49526, 2012.

D. H. Mcdermott, P. A. Zimmerman, F. Guignard, C. A. Kleeberger, S. F. Leitman et al., CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS), vol.352, pp.866-870, 1998.

S. Mummidi, M. Bamshad, S. S. Ahuja, E. Gonzalez, P. M. Feuillet et al., Evolution of human and nonhuman primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus, J. Biol. Chem, vol.275, pp.18946-18961, 2000.

G. Catano, Z. A. Chykarenko, A. Mangano, J. M. Anaya, W. He et al., Concordance of CCR5 genotypes that influence cell-mediated immunity and HIV-1 disease progression rates, J. Infect. Dis, vol.203, pp.263-272, 2011.

E. Gonzalez, H. Kulkarni, H. Bolivar, A. Mangano, R. Sanchez et al., The influence of CCL3L1 genecontaining segmental duplications on HIV-1/AIDS susceptibility, Science, vol.307, pp.1434-1440, 2005.

G. G. Gornalusse, S. Mummidi, A. A. Gaitan, F. Jimenez, V. Ramsuran et al., Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.4762-4771, 2015.

S. Mummidi, L. M. Adams, S. E. Vancompernolle, M. Kalkonde, J. F. Camargo et al., Production of specific mRNA transcripts, usage of an alternate promoter, and octamer-binding transcription factors influence the surface expression levels of the HIV coreceptor CCR5 on primary T cells, J. Immunol, vol.178, pp.5668-5681, 2007.

P. Loetscher, M. Seitz, M. Baggiolini, and B. Moser, Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes, J. Exp. Med, vol.184, pp.569-577, 1996.

Y. F. Yang, M. Tomura, M. Iwasaki, T. Mukai, P. Gao et al., IL-12 as well as IL-2 upregulates CCR5 expression on T cell receptor-triggered human CD4 + and CD8+ T cells, J. Clin. Immunol, vol.21, pp.116-125, 2001.

J. Geginat, F. Sallusto, and A. Lanzavecchia, Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells, J. Exp. Med, vol.194, pp.1711-1719, 2001.

F. Groot, T. M. Van-capel, J. Schuitemaker, B. Berkhout, E. C. De et al., Differential susceptibility of naive, central memory and effector memory T cells to dendritic cellmediated HIV-1 transmission, Retrovirology, vol.3, p.52, 2006.

P. Loetscher, M. Uguccioni, L. Bordoli, M. Baggiolini, B. Moser et al., CCR5 is characteristic of Th1 lymphocytes, Nature, vol.391, pp.344-345, 1998.

F. Sallusto, Heterogeneity of human CD4(+) T cells against microbes, Annu. Rev. Immunol, vol.34, pp.317-334, 2016.

D. A. Rao, M. F. Gurish, J. L. Marshall, K. Slowikowski, C. Y. Fonseka et al., Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis, Nature, vol.542, pp.110-114, 2017.

R. G. Carroll, J. L. Riley, B. L. Levine, Y. Feng, S. Kaushal et al., Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells, Science, vol.276, pp.273-276, 1997.

E. E. Nakayama, Y. Tanaka, Y. Nagai, A. Iwamoto, and T. Shioda, A CCR2-V64I polymorphism affects stability of CCR2A isoform, vol.18, pp.729-738, 2004.

L. Guglielmi, S. Gimenez, M. Larroque, X. Tong, P. Portales et al., Circulating human CD4 + T cells have intracellular pools of CCR5 molecules, Blood, vol.118, pp.1177-1178, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00635939

H. A. Pilch-cooper, S. F. Sieg, T. J. Hope, A. Koons, J. M. Escola et al., Circulating human CD4 and CD8 T cells do not have large intracellular pools of CCR5, Blood, vol.118, pp.1015-1019, 2011.

D. Askew, C. A. Su, D. S. Barkauskas, R. D. Dorand, J. Myers et al., Transient surface CCR5 expression by naive CD8+ T cells within inflamed lymph nodes is dependent on high endothelial venule interaction and augments Th cell-dependent memory response, J. Immunol, vol.196, pp.3653-3664, 2016.

M. Westby and E. Van-der-ryst, CCR5 antagonists: hosttargeted antiviral agents for the treatment of HIV infection, 4 years on, Antivir. Chem. Chemother, vol.20, pp.179-192, 2010.

C. Bonsch, M. Munteanu, I. Rossitto-borlat, A. Furstenberg, and O. Hartley, Potent anti-HIV chemokine analogs direct postendocytic sorting of CCR5, PLoS One, vol.10, p.125396, 2015.

K. Oswald-richter, S. M. Grill, M. Leelawong, M. Tseng, S. A. Kalams et al., Identification of a CCR5-expressing T cell subset that is resistant to R5-tropic HIV infection, PLoS Pathog, vol.3, p.58, 2007.

N. Orlova-fink, F. Z. Chowdhury, X. Sun, S. Harrington, E. S. Rosenberg et al., Preferential susceptibility of Th9 and Th2 CD4+ T cells to X4-tropic HIV-1 infection, vol.31, pp.2211-2215, 2017.

M. Perreau, A. L. Savoye, E. De-crignis, J. M. Corpataux, R. Cubas et al., Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production, J. Exp. Med, vol.210, pp.143-156, 2013.

M. Lindqvist, J. Van-lunzen, D. Z. Soghoian, B. D. Kuhl, S. Ranasinghe et al., Expansion of HIV-specific T follicular helper cells in chronic HIV infection, J. Clin. Invest, vol.122, pp.3271-3280, 2012.

Y. Xu, C. Phetsouphanh, K. Suzuki, A. Aggrawal, S. Graffdubois et al., HIV-1 and SIV predominantly use CCR5 expressed on a precursor population to establish infection in T follicular helper cells, Front. Immunol, vol.8, p.376, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526959

B. L. Gilliam, A. Heredia, A. Devico, N. Le, D. Bamba et al., Rapamycin reduces CCR5 mRNA levels in macaques: potential applications in HIV-1 prevention and treatment, AIDS, vol.21, pp.2108-2110, 2007.

N. R. Klatt, N. Chomont, D. C. Douek, and S. G. Deeks, Immune activation and HIV persistence: implications for curative approaches to HIV infection, Immunol. Rev, vol.254, pp.326-342, 2013.

J. P. Casazza, J. M. Brenchley, B. J. Hill, R. Ayana, D. Ambrozak et al., Autocrine production of beta-chemokines protects CMV-specific CD4 T cells from HIV infection, PLoS Pathog, vol.5, p.1000646, 2009.

P. J. Mclaren, C. Coulonges, I. Bartha, T. L. Lenz, A. J. Deutsch et al., Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.14658-14663, 2015.

L. G. Kostrikis, Y. Huang, J. P. Moore, S. M. Wolinsky, L. Zhang et al., A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation, Nat. Med, vol.4, pp.350-353, 1998.

J. Tang, B. Shelton, N. J. Makhatadze, Y. Zhang, M. Schaen et al., Distribution of chemokine receptor CCR2 and CCR5 genotypes and their relative contribution to human immunodeficiency virus type 1 (HIV-1) seroconversion, early HIV-1 RNA concentration in plasma, and later disease progression, J. Virol, vol.76, pp.662-672, 2002.

R. Mariani, S. Wong, L. C. Mulder, D. A. Wilkinson, A. L. Reinhart et al., CCR2-64I polymorphism is not associated with altered CCR5 expression or coreceptor function, J. Virol, vol.73, pp.2450-2459, 1999.

M. P. Martin, M. Dean, M. W. Smith, C. Winkler, B. Gerrard et al., Genetic acceleration of AIDS progression by a promoter variant of CCR5, Science, vol.282, pp.1907-1911, 1998.

J. R. Townson, L. F. Barcellos, and R. J. Nibbs, Gene copy number regulates the production of the human chemokine CCL3-L1, Eur. J. Immunol, vol.32, pp.3016-3026, 2002.

T. J. Urban, A. C. Weintrob, J. Fellay, S. Colombo, K. V. Shianna et al., CCL3L1 and HIV/AIDS susceptibility, vol.15, pp.1110-1112, 2009.

M. J. Dolan, H. Kulkarni, J. F. Camargo, W. He, A. Smith et al., CCL3L1 and CCR5 influence cellmediated immunity and affect HIV-AIDS pathogenesis via viral entry-independent mechanisms, Nat. Immunol, vol.8, pp.1324-1336, 2007.

S. K. Ahuja, H. Kulkarni, G. Catano, B. K. Agan, J. F. Camargo et al., CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals, Nat. Med, vol.14, pp.413-420, 2008.

L. Shostakovich-koretskaya, G. Catano, Z. A. Chykarenko, W. He, G. Gornalusse et al., Combinatorial content of CCL3L and CCL4L gene copy numbers influence HIV-AIDS susceptibility in Ukrainian children, AIDS, vol.23, pp.679-688, 2009.

W. Shao, J. Tang, W. Song, C. Wang, Y. Li et al., CCL3L1 and CCL4L1: variable gene copy number in adolescents with and without human immunodeficiency virus type 1 (HIV-1) infection, Genes Immun, vol.8, pp.224-231, 2007.

T. Bhattacharya, J. Stanton, E. Y. Kim, K. J. Kunstman, J. P. Phair et al., CCL3L1 and HIV/AIDS susceptibility, vol.15, pp.1112-1115, 2009.

L. A. Chakrabarti, The different modes of resistance to AIDS: lessons from HIV/SIV controllers and SIV natural hosts, Natural Hosts of SIV: Implications in AIDS, pp.287-352, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01092064

L. A. Chakrabarti, S. R. Lewin, L. Zhang, A. Gettie, A. Luckay et al., Normal T-cell turnover in sooty mangabeys harboring active simian immunodeficiency virus infection, J. Virol, vol.74, pp.1209-1223, 2000.

D. L. Sodora, J. S. Allan, C. Apetrei, J. M. Brenchley, D. C. Douek et al., Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts, Nat. Med, vol.15, pp.861-865, 2009.

R. Veazey, B. Ling, I. Pandrea, H. Mcclure, A. Lackner et al., Decreased CCR5 expression on CD4+ T cells of SIV-infected sooty mangabeys, AIDS Res. Hum. Retrovir, vol.19, pp.227-233, 2003.

I. Pandrea, C. Apetrei, S. Gordon, J. Barbercheck, J. Dufour et al., Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts, Blood, vol.109, pp.1069-1076, 2007.

A. Chahroudi, T. Meeker, B. Lawson, S. Ratcliffe, J. Else et al., Mother-to-infant transmission of simian immunodeficiency virus is rare in sooty mangabeys and is associated with low viremia, J. Virol, vol.85, pp.5757-5763, 2011.

I. Pandrea, N. F. Parrish, K. Raehtz, T. Gaufin, H. J. Barbian et al., Mucosal simian immunodeficiency virus transmission in African green monkeys: susceptibility to infection is proportional to target cell availability at mucosal sites, J. Virol, vol.86, pp.4158-4168, 2012.

A. Chahroudi, E. Cartwright, S. T. Lee, M. Mavigner, D. G. Carnathan et al., Target cell availability, rather than breast milk factors, dictates mother-to-infant transmission of SIV in sooty mangabeys and rhesus macaques, PLoS Pathog, vol.10, p.1003958, 2014.

M. Paiardini, B. Cervasi, E. Reyes-aviles, L. Micci, A. M. Ortiz et al., Low levels of SIV infection in sooty mangabey central memory CD(4)(+) T cells are associated with limited CCR5 expression, Nat. Med, vol.17, pp.830-836, 2011.

E. K. Cartwright, C. S. Mcgary, B. Cervasi, L. Micci, B. Lawson et al., Divergent CD4 + T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections, J. Immunol, vol.192, pp.4666-4673, 2014.

B. Beer, J. Scherer, J. Megede, S. Norley, M. Baier et al., Lack of dichotomy between virus load of peripheral blood and lymph nodes during long-term simian immunodeficiency virus infection of African green monkeys, Virology, vol.219, pp.367-375, 1996.

O. M. Diop, A. Gueye, M. Dias-tavares, C. Kornfeld, A. Faye et al., High levels of viral replication during primary simian immunodeficiency virus SIVagm infection are rapidly and strongly controlled in African green monkeys, J. Virol, vol.74, pp.7538-7547, 2000.

S. N. Gordon, N. R. Klatt, S. E. Bosinger, J. M. Brenchley, J. M. Milush et al., Severe depletion of mucosal CD4 + T cells in AIDS-free simian immunodeficiency virusinfected sooty mangabeys, J. Immunol, vol.179, pp.3026-3034, 2007.

I. V. Pandrea, R. Gautam, R. M. Ribeiro, J. M. Brenchley, I. F. Butler et al., Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence, J. Immunol, vol.179, pp.3035-3046, 2007.

M. Meythaler, Z. Wang, A. Martinot, S. Pryputniewicz, M. Kasheta et al., Early induction of polyfunctional simian immunodeficiency virus (SIV)-specific T lymphocytes and rapid disappearance of SIV from lymph nodes of sooty mangabeys during primary infection, J. Immunol, vol.186, pp.5151-5161, 2011.

J. M. Brenchley, C. Vinton, B. Tabb, X. P. Hao, E. Connick et al., Differential infection patterns of CD4+ T cells and lymphoid tissue viral burden distinguish progressive and nonprogressive lentiviral infections, Blood, vol.120, pp.4172-4181, 2012.

K. D. Mir, M. Mavigner, C. Wang, M. Paiardini, D. L. Sodora et al., Reduced simian immunodeficiency virus replication in macrophages of sooty mangabeys is associated with increased expression of host restriction factors, J. Virol, vol.89, pp.10136-10144, 2015.

Y. Murayama, R. Mukai, M. Inoue-murayama, and Y. Yoshikawa, An African green monkey lacking peripheral CD4 lymphocytes that retains helper T cell activity and coexists with SIVagm, Clin. Exp. Immunol, vol.117, pp.504-512, 1999.

C. Vinton, N. R. Klatt, L. D. Harris, J. A. Briant, B. E. Sandersbeer et al., CD4-like immunological function by CD4 ? T cells in multiple natural hosts of simian immunodeficiency virus, J. Virol, vol.85, pp.8702-8708, 2011.

J. M. Milush, K. D. Mir, V. Sundaravaradan, S. N. Gordon, J. Engram et al., Lack of clinical AIDS in SIVinfected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells, J. Clin. Invest, vol.121, pp.1102-1110, 2011.

S. Locatelli and M. Peeters, Cross-species transmission of simian retroviruses: how and why they could lead to the emergence of new diseases in the human population, AIDS, vol.26, pp.659-673, 2012.

Z. Chen, D. Kwon, Z. Jin, S. Monard, P. Telfer et al., Natural infection of a homozygous delta24 CCR5 red-capped mangabey with an R2b-tropic simian immunodeficiency virus, J. Exp. Med, vol.188, pp.2057-2065, 1998.

N. E. Riddick, E. A. Hermann, L. M. Loftin, S. T. Elliott, W. C. Wey et al., A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor use in vivo, PLoS Pathog, vol.6, p.1001064, 2010.

S. T. Elliott, K. S. Wetzel, N. Francella, S. Bryan, D. C. Romero et al., Dualtropic CXCR6/CCR5 simian immunodeficiency virus (SIV) infection of sooty mangabey primary lymphocytes: distinct coreceptor use in natural versus pathogenic hosts of SIV, J. Virol, vol.89, pp.9252-9261, 2015.

S. T. Sina, W. Ren, and C. Cheng-mayer, Coreceptor use in nonhuman primate models of HIV infection, J. Transl. Med, vol.9, p.7, 2011.

S. E. Kuhmann, N. Madani, O. M. Diop, E. J. Platt, J. Morvan et al., Frequent substitution polymorphisms in African green monkey CCR5 cluster at critical sites for infections by simian immunodeficiency virus SIVagm, implying ancient virus-host coevolution, J. Virol, vol.75, pp.8449-8460, 2001.

N. E. Riddick, F. Wu, K. Matsuda, S. Whitted, I. Ourmanov et al., Simian immunodeficiency virus SIVagm efficiently utilizes non-CCR5 entry pathways in African green monkey lymphocytes: potential role for GPR15 and CXCR6 as viral coreceptors, J. Virol, vol.90, pp.2316-2331, 2015.

K. S. Wetzel, Y. Yi, S. T. Elliott, D. Romero, B. Jacquelin et al., CXCR6-mediated simian immunodeficiency virus SIVagmSab entry into sabaeus African green monkey lymphocytes implicates widespread use of non-CCR5 pathways in natural host infections, J. Virol, p.91, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01960612

C. H. Kim, E. J. Kunkel, J. Boisvert, B. Johnston, J. J. Campbell et al., Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential, J. Clin. Invest, vol.107, pp.595-601, 2001.

S. P. Singh, H. H. Zhang, J. F. Foley, M. N. Hedrick, and J. M. Farber, Human T cells that are able to produce IL-17 express the chemokine receptor CCR6, J. Immunol, vol.180, pp.214-221, 2008.

L. A. Chakrabarti and V. Simon, Immune mechanisms of HIV control, Curr. Opin. Immunol, vol.22, pp.488-496, 2010.

B. D. Walker and X. G. Yu, Unravelling the mechanisms of durable control of HIV-1, Nat. Rev. Immunol, vol.13, pp.487-498, 2013.

A. Saez-cirion, C. Hamimi, A. Bergamaschi, A. David, P. Versmisse et al., Restriction of HIV-1 replication in macrophages and CD4 + T cells from HIV controllers, Blood, vol.118, pp.955-964, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01420583

M. J. Buzon, K. Seiss, R. Weiss, A. L. Brass, E. S. Rosenberg et al., Inhibition of HIV-1 integration in ex vivo-infected CD4 T cells from elite controllers, J. Virol, vol.85, pp.9646-9650, 2011.

S. A. Rabi, K. A. O'connell, D. Nikolaeva, J. R. Bailey, B. L. Jilek et al., Unstimulated primary CD4 + T cells from HIV-1-positive elite suppressors are fully susceptible to HIV-1 entry and productive infection, J. Virol, vol.85, pp.979-986, 2011.

B. Julg, F. Pereyra, M. J. Buzon, A. Piechocka-trocha, M. J. Clark et al., Infrequent recovery of HIV from but robust exogenous infection of activated CD4(+) T cells in HIV elite controllers, Clin. Infect. Dis, vol.51, pp.233-238, 2010.

C. Hamimi, A. David, P. Versmisse, L. Weiss, T. Bruel et al., Dendritic cells from HIV controllers have low susceptibility to HIV-1 infection in vitro but high capacity to capture HIV-1 particles, PLoS One, vol.11, p.160251, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01375755

W. E. Walker, S. Kurscheid, S. Joshi, C. A. Lopez, G. Goh et al., Increased levels of macrophage inflammatory proteins result in resistance to R5-tropic HIV-1 in a subset of elite controllers, J. Virol, vol.89, pp.5502-5514, 2015.

H. Meijerink, A. R. Indrati, R. Van-crevel, I. Joosten, H. Koenen et al., The number of CCR5 expressing CD4 + T lymphocytes is lower in HIV-infected long-term non-progressors with viral control compared to normal progressors: a cross-sectional study, BMC Infect. Dis, vol.14, p.683, 2014.

C. Pastori, B. Weiser, C. Barassi, C. Uberti-foppa, S. Ghezzi et al., Long-lasting CCR5 internalization by antibodies in a subset of long-term nonprogressors: a possible protective effect against disease progression, Blood, vol.107, pp.4825-4833, 2006.

A. Venuti, C. Pastori, and L. Lopalco, The role of natural antibodies to CC chemokine receptor 5 in HIV infection, Front. Immunol, vol.8, p.1358, 2017.

M. Rotger, J. Dalmau, A. Rauch, P. Mclaren, S. E. Bosinger et al., Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque, J. Clin. Invest, vol.121, pp.2391-2400, 2011.

N. R. Klatt, S. E. Bosinger, M. Peck, L. E. Richert-spuhler, A. Heigele et al., Limited HIV infection of central memory and stem cell memory CD4+ T cells is associated with lack of progression in viremic individuals, PLoS Pathog, vol.10, p.1004345, 2014.

M. Muenchhoff, E. Adland, O. Karimanzira, C. Crowther, M. Pace et al., Nonprogressing HIV-infected children share fundamental immunological features of nonpathogenic SIV infection, Sci. Transl. Med, vol.8, pp.358-125, 2016.

T. I. Silva, M. Cotten, and S. L. Rowland-jones, HIV-2: the forgotten AIDS virus, Trends Microbiol, vol.16, pp.588-595, 2008.

H. Blaak, P. H. Boers, R. A. Gruters, H. Schuitemaker, M. E. Van-der-ende et al., Osterhaus, CCR5, GPR15, and CXCR6 are major coreceptors of human immunodeficiency virus type 2 variants isolated from individuals with and without plasma viremia, J. Virol, vol.79, pp.1686-1700, 2005.

S. B. Joseph and R. Swanstrom, The evolution of HIV-1 entry phenotypes as a guide to changing target cells, J. Leukoc. Biol, vol.103, pp.421-431, 2018.

M. J. Duenas-decamp, P. J. Peters, A. Repik, T. Musich, M. P. Gonzalez-perez et al., Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, Futur. Virol, vol.5, pp.435-451, 2010.

C. Cheng-mayer and J. A. Levy, Distinct biological and serological properties of human immunodeficiency viruses from the brain, Ann. Neurol, vol.23, pp.58-61, 1988.

P. R. Gorry, J. Taylor, G. H. Holm, A. Mehle, T. Morgan et al., Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate, J. Virol, vol.76, pp.6277-6292, 2002.

P. J. Peters, J. Bhattacharya, S. Hibbitts, M. T. Dittmar, G. Simmons et al., Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages, J. Virol, vol.78, pp.6915-6926, 2004.

R. L. Dunfee, E. R. Thomas, P. R. Gorry, J. Wang, J. Taylor et al., The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.15160-15165, 2006.

T. Shioda, J. A. Levy, and C. Cheng-mayer, Macrophage and T cellline tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene, Nature, vol.349, pp.167-169, 1991.

P. J. Peters, M. J. Duenas-decamp, W. M. Sullivan, R. Brown, C. Ankghuambom et al., Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors, Retrovirology, vol.5, p.5, 2008.

S. B. Joseph, K. T. Arrildt, A. E. Swanstrom, G. Schnell, B. Lee et al., Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities, J. Virol, vol.88, pp.1858-1869, 2014.

T. Igarashi, C. R. Brown, Y. Endo, A. Buckler-white, R. Plishka et al., Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.658-663, 2001.

T. Igarashi, O. K. Donau, H. Imamichi, M. J. Dumaurier, R. Sadjadpour et al., Macrophage-tropic simian/ human immunodeficiency virus chimeras use CXCR4, not CCR5, for infections of rhesus macaque peripheral blood mononuclear cells and alveolar macrophages, J. Virol, vol.77, pp.13042-13052, 2003.

A. M. Ortiz, N. R. Klatt, B. Li, Y. Yi, B. Tabb et al., Depletion of CD4(+) T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques, J. Clin. Invest, vol.121, pp.4433-4445, 2011.

N. Francella, S. T. Elliott, Y. Yi, S. E. Gwyn, A. M. Ortiz et al., Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo, Retrovirology, vol.10, p.133, 2013.

N. Francella, S. E. Gwyn, Y. Yi, B. Li, P. Xiao et al., CD4+ T cells support production of simian immunodeficiency virus Env antibodies that enforce CD4-dependent entry and shape tropism in vivo, J. Virol, vol.87, pp.9719-9732, 2013.

M. Koot, R. Van-leeuwen, R. E. De-goede, I. P. Keet, S. Danner et al., Conversion rate towards a syncytium-inducing (SI) phenotype during different stages of human immunodeficiency virus type 1 infection and prognostic value of SI phenotype for survival after AIDS diagnosis, J. Infect. Dis, vol.179, pp.254-258, 1999.

M. A. Jensen, F. S. Li, A. B. Van't-wout, D. C. Nickle, D. Shriner et al., Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences, J. Virol, vol.77, pp.13376-13388, 2003.

J. M. Harouse, A. Gettie, R. C. Tan, J. Blanchard, and C. Chengmayer, Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs, Science, vol.284, pp.816-819, 1999.

S. H. Ho, L. Shek, A. Gettie, J. Blanchard, and C. Cheng-mayer, V3 loop-determined coreceptor preference dictates the dynamics of CD4 +-T-cell loss in simian-human immunodeficiency virus-infected macaques, J. Virol, vol.79, pp.12296-12303, 2005.

H. Blaak, A. B. Van't-wout, M. Brouwer, B. Hooibrink, E. Hovenkamp et al., In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.1269-1274, 2000.

R. D. Berkowitz, S. Alexander, C. Bare, V. Linquist-stepps, M. Bogan et al., CCR5-and CXCR4-utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo, J. Virol, vol.72, pp.10108-10117, 1998.

E. H. Stalmeijer, R. P. Van-rij, B. Boeser-nunnink, J. A. Visser, M. A. Naarding et al., In vivo evolution of X4 human immunodeficiency virus type 1 variants in the natural course of infection coincides with decreasing sensitivity to CXCR4 antagonists, J. Virol, vol.78, pp.2722-2728, 2004.

J. Repits, J. Sterjovski, D. Badia-martinez, M. Mild, L. Gray et al., Primary HIV-1 R5 isolates from endstage disease display enhanced viral fitness in parallel with increased gp120 net charge, Virology, vol.379, pp.125-134, 2008.

L. A. Chakrabarti, T. Ivanovic, and C. Cheng-mayer, Properties of the surface envelope glycoprotein associated with virulence of simian-human immunodeficiency virus SHIV (SF33A) molecular clones, J. Virol, vol.76, pp.1588-1599, 2002.

E. M. Bunnik, E. D. Quakkelaar, A. C. Van-nuenen, B. Boeser-nunnink, and H. Schuitemaker, Increased neutralization sensitivity of recently emerged CXCR4-using human immunodeficiency virus type 1 strains compared to coexisting CCR5-using variants from the same patient, J. Virol, vol.81, pp.525-531, 2007.

C. Cheng-mayer, S. Tasca, and S. H. Ho, Coreceptor switch in infection of nonhuman primates, Curr. HIV Res, vol.7, pp.30-38, 2009.

M. Coetzer, R. Nedellec, J. Salkowitz, S. Mclaughlin, Y. Liu et al., Evolution of CCR5 use before and during coreceptor switching, J. Virol, vol.82, pp.11758-11766, 2008.

R. Nedellec, J. T. Herbeck, P. W. Hunt, S. G. Deeks, J. I. Mullins et al., High-sequence diversity and rapid virus turnover contribute to higher rates of coreceptor switching in treatment-experienced subjects with HIV-1 viremia, AIDS Res. Hum. Retrovir, vol.33, pp.234-245, 2017.

K. Zhuang, A. Finzi, J. Toma, A. Frantzell, W. Huang et al., Identification of interdependent variables that influence coreceptor switch in R5 SHIV(SF162P3N)-infected macaques, Retrovirology, vol.9, p.106, 2012.

S. Tasca, S. H. Ho, and C. Cheng-mayer, R5X4 viruses are evolutionary, functional, and antigenic intermediates in the pathway of a simian-human immunodeficiency virus coreceptor switch, J. Virol, vol.82, pp.7089-7099, 2008.

T. W. Chun, J. S. Justement, R. A. Lempicki, J. Yang, G. Dennis et al., Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.1908-1913, 2003.

L. A. Napolitano, R. M. Grant, S. G. Deeks, D. Schmidt, S. C. De-rosa et al., Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis, Nat. Med, vol.7, pp.73-79, 2001.

N. Brieu, P. Portales, M. J. Carles, and P. Corbeau, Interleukin-7 induces HIV type 1 R5-to-X4 switch, Blood, vol.117, pp.2073-2074, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00575102

M. Coetzer, T. Cilliers, L. H. Ping, R. Swanstrom, and L. Morris, Genetic characteristics of the V3 region associated with CXCR4 usage in HIV-1 subtype C isolates, Virology, vol.356, pp.95-105, 2006.

W. Huang, S. H. Eshleman, J. Toma, S. Fransen, E. Stawiski et al., Coreceptor tropism in human immunodeficiency virus type 1 subtype D: high prevalence of CXCR4 tropism and heterogeneous composition of viral populations, J. Virol, vol.81, pp.7885-7893, 2007.

Z. L. Brumme, J. Goodrich, H. B. Mayer, C. J. Brumme, B. M. Henrick et al., Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals, J. Infect. Dis, vol.192, pp.466-474, 2005.

C. Duquenne, C. Psomas, S. Gimenez, A. Guigues, M. J. Carles et al., The two human CXCR4 isoforms display different HIV receptor activities: consequences for the emergence of X4 strains, J. Immunol, vol.193, pp.4188-4194, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01074809

Y. L. Lin, C. Mettling, P. Portales, R. Rouzier, J. Clot et al., The chemokine CCL5 regulates the in vivo cell surface expression of its receptor, AIDS, vol.5, pp.430-432, 2008.

N. Gonzalez, M. Bermejo, E. Calonge, C. Jolly, F. Arenzana-seisdedos et al., SDF-1/CXCL12 production by mature dendritic cells inhibits the propagation of X4-tropic HIV-1 isolates at the dendritic cell-T-cell infectious synapse, J. Virol, vol.84, pp.4341-4351, 2010.

G. Fatkenheuer, M. Nelson, A. Lazzarin, I. Konourina, A. I. Hoepelman et al., Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection, N. Engl. J. Med, vol.359, pp.1442-1455, 2008.

G. Fatkenheuer, A. L. Pozniak, M. A. Johnson, A. Plettenberg, S. Staszewski et al., Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1, Nat. Med, vol.11, pp.1170-1172, 2005.

M. Perez-olmeda and J. Alcami, Determination of HIV tropism and its use in the clinical practice, Expert Rev. Anti-Infect. Ther, vol.11, pp.1291-1302, 2013.

L. Cuzin, S. Trabelsi, P. Delobel, C. Barbuat, J. Reynes et al., Maraviroc intensification of stable antiviral therapy in HIV-1-infected patients with poor immune restoration: MARIMUNO-ANRS 145 study, J. Acquir. Immune Defic. Syndr, vol.61, pp.557-564, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00767144

P. W. Hunt, N. S. Shulman, T. L. Hayes, V. Dahl, M. Somsouk et al., The immunologic effects of maraviroc intensification in treated HIV-infected individuals with incomplete CD4 + T-cell recovery: a randomized trial, Blood, vol.121, pp.4635-4646, 2013.

J. Ananworanich, N. Chomont, J. L. Fletcher, S. Pinyakorn, A. Schuetz et al., Markers of HIV reservoir size and immune activation after treatment in acute HIV infection with and without raltegravir and maraviroc intensification, J. Virus Erad, vol.1, pp.116-122, 2015.

A. R. Cillo, B. B. Hilldorfer, C. M. Lalama, J. E. Mckinnon, R. W. Coombs et al., Virologic and immunologic effects of adding maraviroc to suppressive antiretroviral therapy in individuals with suboptimal CD4+ T-cell recovery, AIDS, vol.29, pp.2121-2129, 2015.

S. F. Van-lelyveld, J. Drylewicz, M. Krikke, E. M. Veel, S. A. Otto et al., Maraviroc intensification of cART in patients with suboptimal immunological recovery: a 48-week, placebocontrolled randomized trial, PLoS One, vol.10, p.132430, 2015.

A. Cheret, G. Nembot, A. Melard, C. Lascoux, L. Slama et al., Intensive five-drug antiretroviral therapy regimen versus standard triple-drug therapy during primary HIV-1 infection (OPTIPRIM-ANRS 147): a randomised, open-label, Lancet Infect. Dis, vol.15, pp.387-396, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01968121

C. Pressiat, D. Hirt, J. M. Treluyer, Y. Zheng, P. Morlat et al., Decreased darunavir concentrations during once-daily co-administration with maraviroc and raltegravir: OPTIPRIM-ANRS 147 trial, J. Antimicrob. Chemother, vol.73, pp.1020-1024, 2018.

C. Katlama, L. Assoumou, M. A. Valantin, C. Soulie, C. Duvivier et al., Maraviroc plus raltegravir failed to maintain virological suppression in HIV-infected patients with lipohypertrophy: results from the ROCnRAL ANRS 157 study, J. Antimicrob. Chemother, vol.69, pp.1648-1652, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01917896

M. R. Lopez-huertas, L. Jimenez-tormo, N. Madrid-elena, C. Gutierrez, S. Rodriguez-mora et al., The CCR5-antagonist maraviroc reverses HIV-1 latency in vitro alone or in combination with the PKC-agonist Bryostatin-1, Sci. Rep, vol.7, p.2385, 2017.

N. Madrid-elena, M. L. Garcia-bermejo, S. Serrano-villar, A. Diaz-de-santiago, B. Sastre et al., Maraviroc is associated with latent HIV-1 reactivation through NF-kappaB activation in resting CD4(+) T cells from HIV-infected individuals on suppressive antiretroviral therapy, J. Virol, vol.92, pp.1931-1948, 2018.

J. D. Reeves, S. A. Gallo, N. Ahmad, J. L. Miamidian, P. E. Harvey et al., Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.16249-16254, 2002.

S. Harada and K. Yoshimura, Driving HIV-1 into a vulnerable corner by taking advantage of viral adaptation and evolution, Front. Microbiol, vol.8, p.390, 2017.

F. Tacke, Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis, Expert Opin. Investig. Drugs, vol.27, pp.301-311, 2018.

D. R. Burger, Y. Parker, K. Guinta, and D. Lindner, PRO 140 monoclonal antibody to CCR5 prevents acute xenogeneic graft-versus-host disease in NOD-scid IL-2Ry(null) mice, Biol. Blood Marrow Transplant, vol.24, pp.260-266, 2018.

O. Hartley, H. Gaertner, J. Wilken, D. Thompson, R. Fish et al., Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.16460-16465, 2004.

R. S. Veazey, P. J. Klasse, S. M. Schader, Q. Hu, T. J. Ketas et al., Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion, Nature, vol.438, pp.99-102, 2005.

H. Gaertner, F. Cerini, J. M. Escola, G. Kuenzi, A. Melotti et al., Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.17706-17711, 2008.

K. Dorgham, F. Cerini, H. Gaertner, A. Melotti, I. Rossittoborlat et al., Generating chemokine analogs with enhanced pharmacological properties using phage display, Methods Enzymol, vol.570, pp.47-72, 2016.

A. G. Yang, X. Bai, X. F. Huang, C. Yao, and S. Chen, Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.11567-11572, 1997.

R. Schroers, C. M. Davis, H. J. Wagner, and S. Y. Chen, Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection, Gene Ther, vol.9, pp.889-897, 2002.

N. Y. Petit, C. Baillou, A. Burlion, K. Dorgham, B. Levacher et al., Gene transfer of two entry inhibitors protects CD4(+) T cell from HIV-1 infection in humanized mice, Gene Ther, vol.23, pp.144-150, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01289168

P. Steinberger, J. Andris-widhopf, B. Buhler, B. E. Torbett, C. F. Barbas et al., Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.805-810, 2000.

B. P. Burke, B. R. Levin, J. Zhang, A. Sahakyan, J. Boyer et al., Engineering cellular resistance to HIV-1 infection in vivo using a dual therapeutic lentiviral vector, Mol. Ther. Nucleic Acids, vol.4, p.236, 2015.

R. Myburgh, S. Ivic, M. S. Pepper, G. Gers-huber, D. Li et al., Lentivector knockdown of CCR5 in hematopoietic stem and progenitor cells confers functional and persistent HIV-1 resistance in humanized mice, J. Virol, vol.89, pp.6761-6772, 2015.

R. J. Scarborough and A. Gatignol, RNA interference therapies for an HIV-1 functional cure, Viruses, vol.10, 2017.

K. G. Haworth, C. W. Peterson, and H. P. Kiem, CCR5-edited gene therapies for HIV cure: closing the door to viral entry, Cytotherapy, vol.19, pp.1325-1338, 2017.

J. Bai, S. Gorantla, N. Banda, L. Cagnon, J. Rossi et al., Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo, Mol. Ther, vol.1, pp.244-254, 2000.

D. L. Digiusto, A. Krishnan, L. Li, H. Li, S. Li et al., RNA-based gene therapy for HIV with lentiviral vectormodified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma, Sci. Transl. Med, vol.2, pp.36-43, 2010.

N. Holt, J. Wang, K. Kim, G. Friedman, X. Wang et al., Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo, Nat. Biotechnol, vol.28, pp.839-847, 2010.

C. W. Peterson, J. Wang, K. K. Norman, Z. K. Norgaard, O. Humbert et al., Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates, Blood, vol.127, pp.2416-2426, 2016.

C. A. Didigu, C. B. Wilen, J. Wang, J. Duong, A. J. Secreto et al., Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection, Blood, vol.123, pp.61-69, 2014.

C. Mussolino, R. Morbitzer, F. Lutge, N. Dannemann, T. Lahaye et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity, Nucleic Acids Res, vol.39, pp.9283-9293, 2011.

L. Xu, H. Yang, Y. Gao, Z. Chen, L. Xie et al., CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo, Mol. Ther, vol.25, pp.1782-1789, 2017.

C. Li, X. Guan, T. Du, W. Jin, B. Wu et al., Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9, J. Gen. Virol, vol.96, pp.2381-2393, 2015.

P. K. Mandal, L. M. Ferreira, R. Collins, T. B. Meissner, C. L. Boutwell et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9, Cell Stem Cell, vol.15, pp.643-652, 2014.

P. Tebas, D. Stein, W. W. Tang, I. Frank, S. Q. Wang et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV, N. Engl. J. Med, vol.370, pp.901-910, 2014.

C. Fellmann, B. G. Gowen, P. C. Lin, J. A. Doudna, and J. E. Corn, Cornerstones of CRISPR-Cas in drug discovery and therapy, Nat. Rev. Drug Discov, vol.16, pp.89-100, 2017.

P. M. Younan, P. Polacino, J. P. Kowalski, C. W. Peterson, N. J. Maurice et al., Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model, Blood, vol.122, pp.179-187, 2013.

S. L. Friedman, V. Ratziu, S. A. Harrison, M. F. Abdelmalek, G. P. Aithal et al., A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis, Hepatology, vol.67, pp.1754-1767, 2018.

N. Halama, I. Zoernig, A. Berthel, C. Kahlert, F. Klupp et al., Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients, Cancer Cell, vol.29, pp.587-601, 2016.

A. S. Lalani, J. Masters, W. Zeng, J. Barrett, R. Pannu et al., Use of chemokine receptors by poxviruses, Science, vol.286, pp.1968-1971, 1999.

S. Hummel, D. Schmidt, B. Kremeyer, B. Herrmann, and M. Oppermann, Detection of the CCR5-Delta32 HIV resistance gene in Bronze Age skeletons, Genes Immun, vol.6, pp.371-374, 2005.

P. C. Sabeti, E. Walsh, S. F. Schaffner, P. Varilly, B. Fry et al., The case for selection at CCR5-Delta32, PLoS Biol, vol.3, p.378, 2005.

S. M. Pontejo and P. M. Murphy, Chemokines encoded by herpesviruses, J. Leukoc. Biol, vol.102, pp.1199-1217, 2017.

F. Alonzo, L. Kozhaya, S. A. Rawlings, T. Reyes-robles, A. L. Dumont et al., CCR5 is a receptor for Staphylococcus aureus leukotoxin ED, Nature, vol.493, pp.51-55, 2013.